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Granular contact force density of states and entropy in a modified Edwards ensemble
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A method has been found to analyze Edwards’ granular contact force probability functional for a special
case. As a result, the granular contact force probability density functions are obtained from first principles for
this case. The results are in excellent agreement with the experimental and simulation data. The derivation
assumes Edwards’ flat measure—a density of st@€xS) that is uniform within the metastable regions of
phase space. The enabling assumption, supported by physical arguments and empirical evidence, is that cor-
relating information is not significantly recursive through loops in the packing. Maximizing a state-counting
entropy results in a transport equation that can be solved numerically. For the present this has been done using
the “mean-structure approximation,” projecting the DOS across all angular coordinates to more clearly identify
its predominant nonuniformities. These features(dyehe grain factorV related to grain stability and strong
correlation between the contact forces on the same grai@2atide structure factoY related to Newton'’s third
law and strong correlation between neighboring grains.
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[. INTRODUCTION ties: the distribution is in question precisely where the forces
are weakest and therefore most difficult to model or measure.
Perhaps the theory provides a clearer view into the funda-
There have been several attempts to derive the granulamental organization of the density of statd30S) in this
contact force probability density functiofPDF for static  region than the empirical methods are presently able to pro-
granular packingsPg(F), by using analogies from thermal vide.
statistical mechanic§l-5]. The interest arises in part be- It seems to the author that this is not the case for two
cause the empiricaPr(F) [6—17 has an exponential tail, reasons. First, it has been shown that the form in the region
reminiscent of the energy distributions of thermal systemsof weak forces evolves in a predictable way as a function of
However, the overall form oPg(F) is not found in thermal stress and/or fabric anisotropy, which may be induced
systems, generally having a peak or plateau near the averaggough shearind6]. The anisotropy dependence probably
force and a nonzero value at zero force as illustrated in Figexplains the variations iP(F) seen among the different
1. empirical studies, in that some jammed packings have dis-
In contrast to this form, the prototypical distributions played peaks while others have displayed plateaus or mono-
found in thermal systems are either monotonically decreagonic forms. For a packing of grains originally in an isotropic
ing (e.g., the Gibbs energy distributipor begin from zero state,Pg(F) displays a form similar to Fig. 1. As the packing
probability density at the origin before rising to a pdalg.,
the Maxwell-Boltzmann distribution In the nonmonotonic
cases the rising slope is due to the degeneracy of energy 0.6}
states. The degeneracies reflect the dimensionality of the sys- 45t
tem and dominate the form of the distribution at weak ener-
gies beginning from the origin. Since the forces in a granular  Pr(f)
medium are vector magnitudes composed from several Car- 4.3
tesian components—implying degeneracy in the force
magnitudes—this raises the question why(F) does not

A. Deriving the contact force distribution

In[Pr(f)] -

likewise begin from the origifP:(0)=0 before rising to its 0.1}

peak? Indeed, a recent mod&l18| predicts that it should. , , ,

The model represents a first-principles approximation for key 1 2 f 3 4 5
elements of the physics and results in a Boltzmann-type

equation that is solvable. This produce®g&F) that begins FIG. 1. Linear plot of the PDRP(f) of the normalized vector

from Pg(0)=0, rises to a peak, and then decays exponenmagnitudes of the granular contact forces resulting from Monte
tially. Because of these considerations, the question may Hearlo solution of the mean-structure transport equation. It has a
asked whether the empirical observations tRat0)>0 is nonzero probability density for zero force, a peak just befev,

rimarily the result of numerical or experimental uncertain-2"d an exponential tail with decay constat1.6. The smooth
P Y P curve is a fit to Eq.(49). The log-log inset shows the behavior

below f=1. The dashed line is a power law of exponert0.3.
These features are consistent with experimental and simulation
*Electronic address: Philip.T.Metzger@nasa.gov data.
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is quasistatically sheared the distribution smoothly evolves tgpace(i.e., the Boltzmann transport equation varjegnd
having a plateau in the region of weak forces and then on tthose which directly assume the form of an entropy or other
becoming a monotonically decreasing function with only anthermodynamic functional.

abrupt change of slope where the peak had previously been. The q model[28,29 may be considered a random walk
After the packing achieves peak shear strength, continuegecause the set of forces in a single layer of the lattice de-
shearing reduces the stress anisotropy and causes the distfiribe a locus in phase space while the random redistribution
bution to retrace its evolution most of the way, ending with agf those forces from one layer to the nggontrolled by the
small peak again. This behavior affects the distribution We"stochasticq variables represents a random walk through that

above the region of numerical uncertainty and cannot be disgpace  Eventually the walk wanders into regions of the space
missed as the result of dynamical or transient forces since t aving the most probable distribution of coordinates

shearing is quasistatic. It is difficult to see how this smOO.thBouchaud has shown that the sufficient requirement to obtain

variation of forms—including plateaus and monotonic . S o .
forms—could be explained if the finitBx(0) >0 were not the exp_onentlal _ta|l in the model is S|mply that SOme grains
transmit all their load from one hemisphere into just one

real. . ot
Second, the unique features of the PDF have been okSz_ontact on the other hemisphd?]. This introduced a new
’ ay to think about granular media: the statistical relaxation

el o o e e 21 {8 e force cistioution does ot oceur dynamically hougr
region of weak forces. These techniques include experimeni§€ time dimension as it does in thermal systems; rather it is
with frictional grains[7,8], numerical simulations with fric- & necessary feature of tirdernal, layer-by-layer static equi-
tional grains [6,9,11-13 or purely frictionless grains librium relationships, where the spatial dimensions play a
[14-1§, and adaptive network model$9]. The simulation role analogous to the time dimension for the corresponding
techniques have included contact dynami€d), discrete set of Cartesian components of fori@&9]. Several generali-
element modeling DEM), and molecular dynamicéMD)  zations of theq model and other lattice-based models have
quenched beneath the glass transifin@], all of which are ~ been developed30]. Some of these are similarly random
well-established techniques. The contact laws in these simivalks in a nondynamic phase space, but others include ex-
lations have included Hertzian, Hookean, and Lennard-Jondgicitly dynamic features to recursively achieve organization
potentials. Simulations have been done with and withoutn the percolating force network.
gravity and under a wide variety of conditions. The transi- In this context it is probably helpful to mention agdBi]
tions between the boundary and bulk have been thoroughifhat the distribution predicted by thge model [29] was not
examined15]. The numerical techniques have demonstrated®r(F), but ratherP,(w) wherew is the total vertical load
the ability to distinguish between distributions that begin atsupported by the grain. Distributions wf andF have been
the origin and those that do nfit5]. Although experiments occasionally confused with one another, especially simce
with frictionless emulsion$18] and some numerical simula- andF become identical in the special case at the flat sides of
tions [17] have been fitted to forms that begin wiBg(0) @ container. This has contributed to the confusion over the
=0, arguably those data would be fit as well or better byform of Pe(F). The g model can also produce distributions
forms with nonzerdPg(0). Py« (F,) of the vertical Cartesian components of the contact
The universality of these observations shows that thdorcesF,, but it cannot directly predict the vector magnitudes
PDF’s unique features are not associated with a specific type of those same contact forces. TRg(F,) predicted by the
of model or theg(nonjexistence of friction, but are fundamen- g model is always monotonically decreasing, in agreement
tal characteristics of static granular packings. Because ofith numerical simulation datgl5].
this, the present paper will proceed with the assumption that Another theoretical model that makes direct statements
these observations are correct but have yet to be explainedbout the contact force DOS is the Boltzmann-type equation
Perhaps the explanation lies in a unique generalization gfresented by Edwards and Gring8,18 mentioned above.
statistical mechanics. Just as the DOS for ideal Bose anth the discussion section, this paper shall attempt to reconcile
Fermi gases are organized differently than the classical dilutthe model with the empirical data.
gas and therefore produce their own unique energy distribu- Other models include several entropy maximization or
tions, so the DOS of granular packings may be organized ifunctional minimization concepts. These methods produce
some unigue way to produce this distinctive PDF. elements of the empirically observed PDF's, but not all of
Such a generalization has been taking shi@fe-22, be-  their features. The concept proposed by Bdg] deals, like
ginning with Edwards’ hypothesif23] that all metastable the g model, with Cartesian components. It produces the
packings are equally probable in the statistical ensemble. Arsame canonical distribution as the unifommmodel. The
other line of progress is based on the concept of directe@oncept proposed by Kruyt and Rothenbyid deals with
force chain networkg24], while others aim to understand contact force magnitudes and predi&{g0)=0, a peak, and
the distribution of forces beneath a localized perturbation oan exponential tail. The concept proposed by N{&inpro-
more generally the stress response funcfhj and the phe- ducesPr(0) >0, a peak, and a nearly Gaussian, compressed-
nomena related to jamming and unjammif6,27. This  exponential tail. Unlike Edwards and Grinev’s model, these
paper focuses more narrowly upon those models or hypotHast three are not derived from first-principles but are hypoth-
eses which predict a PDF by making assumptions about theses drawn by analogy with other entropic systems. Despite
DOS in the ensemble, including those models which take any shortcomings, all these models provide important in-
random walk in a phase spa¢eg., theq mode) or a PDF  sights into the nature of the PDF problem.
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B. Organization of the paper general to accommodate anisotropy in each. On the other

This paper is organized as follows. Section Il will presenthand' this paper does not address the more ampitious prob-
a first-principles analysis of the DOS in a modified versionlem of stress propagation. Therefore the .an_aIyS|s shall not
of the Edwards ensembl@3]. The dynamical behaviors of accommodate large-scale stress and fabric inhomogeneities

granular media will be completely avoided so that EdwardstNat Persist in the ensemble average. An example of an inho-
hypothesis alone shapes the DOS. It will be shown that thg'09eneous case is the conical sandpile formed by central
DOS is highly self-organized and very sparse. Its form delouring, which has directional fabric and stress propagation

pends upon the form dP(F) andvice versaso that recur- away from ;he Ce{]‘tir, of thr? PilE33]. 'r(‘j this paper, only

sion is necessary to solve for either. Maximizing a state"J‘Ct'onds Suﬁ as sha mg,.s t(ra]armg, r;m tg:omﬁ'retssmg are as-
counting entropy in this phase space will produce the recurz4Me€ to dave ﬁccurre In the cions ruc :;)nf bls' oryt tecausffzh
sion equation which is analogous to the Boltzmann transpo €se produce homogeneous slress and fabric states wi
equation. To elucidate the organization of the DOS, it wil heONly statistical fluctuations, vanishing in the ensemble aver-
projected in the mean-structure approximation across all arfﬁ—‘ges' ifically. st ilb ified as the t hich i
gular coordinates before solving numerically. Section Il pre- Fl’ec' Ically, Sress wi the spefl 1€ ask_ € ?r?]sor whic |sf
sents the numerical solution of the mean-structure transpoﬂ volume average over the entiré packing. The source o
equation. The results demonstrate the success of Edwaro%treSS will be me(_:hanlcal at the bou_ndarles_ to a”OV_V for the
hypothesis in that it predicts a form for the PDF’s in quali- ull range of pos.5|ble. states, spmethmg which gravr_cy_alone
tative and quantitative agreement with the experimental angannot do. Gravity will b? eliminated both because it is not
simulation data, havin@c(0) >0, a peak and an exponential necessary and because it breaks a symmetry of the ensemble
tail with a decay constant matching empirical observationsand may thus tend to obscure the organizational features of

. : .~ .. fhe physics.
Section IV discusses the validity of the approach and |nS|ght£ . . . .
into the physics that produce the featuresPafF). Section This leaves the question how to specily the fabric. Ed-

V summarizes the paper and points to several unanswervéards and co-workers have developed a conjugate field
paper. P § eory with the goal of explaining the propagation of stresses
problems and generalizations that are needed.

in granular materials correlated to the local contact geometry
[21]. In that theory it has been shown that two fabric tensors

Il. MODIFIED EDWARDS ENSEMBLE ANALYSIS are required to produce the complete set of stress propoga-
o _ tion equations. They have elsewhere developed a thermody-
A. Description of the particular ensemble namic theory of compaction, in which the relevant specifier

Following Edwards and co-workers, this analysis focuseds simply the scalar volume of the packif#g]. For the sake
upon two-dimensionai2D), amorphous packings of cohe- of simplicity, the choice was made there to avoid the full
sionless, rigid grains having the fixed coordination numbei@nisotropic treatment. For the present purposes, something is
that makes the packing isostaf2l]. The problem shall be needed which is less than the full tensorial treatment but
further idealized, however, by using only smooth, roundmore than scalar compaction. We will therefore use the joint
grains. Also, this paper focuses on the frictionless cas@robability density functioidPDB Pyy(61, ... ,6,) studied in
wherein the 2D isostatic coordination numberZs4. A  Ref. [34]. This function correlates the contact angles that
method has been found to solve Edwards’ probability funcshare the same grain. It can be collapseé j),
tional for this special case. Although this ensemble is highly 4 o
|deaI|z_ed, it is a good starting point because 2D _packmgs of P,(6) = 1 f J f f dOPL(01, ... 0 50— 0.
cohesionless, round grains that are perfectly rigid,12 450 0
and/or frictionless[10,13,15,16,18,37are known to have (1)
force distributions with the same qualitative features as the
more generalized packings and hence must be subject to thihe use of the uncollapsed distribution is deemed necessary
same organizational constraints in the statistics. Thereforbecause the physics of fragile media are grain centered and
they are sufficient to elucidate the origin of those constraintshe intra grain correlations turn out to be the heart of the
in the physics. statistical physics, as shall be shown here. This JPDF is not

The use of exactly four contacts per grain, however, issufficient to relate the packing state to the specified stress
more idealized than has been achieved in typical numericaknsor, however, because it tells nothing of the number and
simulations. Nevertheless, it is acceptable because that is thére of voids created by the arrangement of neighboring
average coordination number for 2D frictionless packings ofgrain configurations. For the present, the voids may be quan-
round, rigid grains which are isostafi22,32, and it will be tified simply by assuming a number of grains per unit dis-
shown herein that the same qualitative and quantitative feaance in a cross section of the 2D packing in each orthogonal
tures of Pe(F) arise as they do in the more realistic simula- direction. These quantities along with the JPDF will be
tions. specified in the ensemble rather than predicted. Evolution of

Two defining issues for the ensemble &gy how to  the internal state of the packing is beyond the present study.
specify the fabric an@2) how to apply stress to it. Since this  Finally, for convenience the idea of “quartered fabric” is
paper is concerned primarily with the derivation BE(F) introduced at several points. It is defined such that
and since its form is known to evolve with stress and fabricP,,(64, ... ,0,) is zero everywhere except where tfl con-
anisotropy under shearing, the ensemble will sufficientlytact is on thejth quadrant of every grain in the packing. For
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the specific case of “quartered isotropy,” collapsing the quareontinuumP,,( 0y, 65, 63, 8,) with the discretized distribution
tered fabric by Eq(1) producesP,(6)=1/2. This mimics  of angles at finiteN, wgmn( 61k, - - - »604n), DUt the meaning is
true isotropy but the anisotropic quartering is apparent in th@onetheless clear.

JPDF. As in the case of nonquartered fabfg, enforces (i) [and(iii )] The Cartesian loads, andw,, on each grain
steric exclusion. To achieve quartered isotropy with steriawill often be called the “supported loads” or simply the
exclusion in a Monte Carlo process it is necessary to weightloads.” At each locus in phase space the relationship exists
the distribution of attempted angles to emphasize the regiorisetween these loads and the Cauchy stress tef®ee, for
close to the edges of each quadrant. Otherwise, steric exclexample, Ref[35].) For simplicity the sum over these Car-
sion would cause notches to appeaPiytf) near the bound- tesian loads is specified. Hence,

ary of each quadrant. The use of quartered fabric in this N N

analysis is only to provide insight into the expressions. It is _ _

always possible to write and numerically solve them for the EWX“_WX’ Z’lwy“_wy’ )
more general case, and it was found that numerical solutions

were indistinguishable with or without quartered fabric. ~ Where the loads are defined by

B. Phase space Wy = (Wor' + W12, Wy, = (WP + W02, (4)

The locus in phase space of a classical dilute monatomiand, using nonquartered fabric,
gas completely defines its state. We wish to define a phase

4
space for granular packings which is similarly complete. A left _

2D frictionless granular packing dfl round, rigid grains is Wya = _le LagFap COSOugp,
isostatic and therefore containkl 2ontacts. The phase space B

therefore requires at leasiN4hase space axes, half of which 4

define the force on each contact and half of which define the ight _

contact angle$F,, 6 k=1, ..., N}, which is labeleds; and W =¥ El RapF e COSOa
has DOSp™W. It is possible to define the ordering of the axes

so that it is understood which four contacts correspond to the 4

same grain and therefore which grains contact one another. It w;‘ff: + E TogFap SN O,p,
will not prove necessary to do so explicitly, although this B=1

ordering is implicitly assumed to exist.

Newton’s third law(N3L) is automatically satisfied ifi, 4
since each contact is represented by only one force and one w*;g“: -> BasF ap SIN O,p. (5)
angle axis. However, enforcing Newton'’s second [&N@2L) B=1

will prove simpler if redundant axes are created to accoun

for each contact force twice, one time with each grain thafihe operatorL; multiplies the expression by 1 ifr/2
’ < 0,5,<3m/2 meaning the3th contact is on the left half of
shares the conta¢F .z, 0,5/ a=1,... N;3=1,...,4, where ap =T g thet

) 4 ’ the grain; else it multiplies it by 0. LikewisB,, T,z and
a subscripts the grain an@ subscripts the contact on the B, test for contacts on the right, top, and bottom sides of the

grain. This space is labelét}. In this new space it will be grain, respectively. For stable graimxazwlxe;tzwright but

H H H ] Xa !
necessary to enforce N3L. Again, it is possible to define thee pemispheric distinctions shall be useful in the analysis.
ordering of the axes so that it is understood which contacts (iv) N3L is satisfied between every pair of contacting

are redundant to one another and therefore which grains affains:
contacting neighbors. It will not be necessary to do so ex-
plicitly, although this ordering is implicitly assumed to exist. Ey(s: - ﬁfg, (6)
In the thermodynamic limilN— <« this ensemble has Ed- ) _ ) )
wards’ flat measure, every metastable state being equallyhere grainsy ande are contacting neighbors through their

probable, The DOS i, is oth and{th contacts, respectively.
(v) N2L for static equilibrium must be satisfied at each
PpOAF 15, 0,51 = Slfabric Py,) 5(2 W, - Wx> grain individually:

contacts

S F.=00a. (7)
><5<2wya—wy){ I1 5(Fy§+Fsg)} % g

(vi) ® enforces no tensile contacts anywhere in the pack-

N 4 4
- ing, which restricts the DOS to the first “quadrant” of the
In addition to these six constraints, two missing con-
where® is the Heavisidgunit step function. straints should be noted
The six constraints which define the accessible regions of (i) The above ensemble does not enforce the shear stress
phase space are described below. but relies on the fact that their ensemble average is zero and

(i) The JPDF for the fabric is specified by the fir§t in the thermodynamic limit the fraction of packings in which
function. Actually, there should be a statement relating thehe shear deviates from zero by more than some arbitrarily

051303-4



GRANULAR CONTACT FORCE DENSITY OF STATES.. PHYSICAL REVIEW E 70, 051303(2004)

small amount will vanish. The Cartesian axes of the packing$ocus inS, represents a single stgi single packing permu-
are taken to be aligned with the principle stress axes so thaation of a set of grain configurationsa locus inS; repre-
the off-diagonal elements of the stress tensor should be zereents a set of mechanically disconnected grain configurations
(i) A cluster of real grains must just touch one anotherthat may or may not be permutable into some number of
forming closed loops, but in the above ensemble the geomestable states. We shall call the latter an “assembly space” to
ric constraints for grains outside the first coordination shelldistinguish it from a phase space that identifies every grain’s
have been intentionally omitted. Thist shell approxima- location in the packing. The fraction of permutations that
tion (FSA) asserts that only negligible correlative informa- satisfy N3L will be quantified in this mapping process.
tion travels all the way around closed loops of grains in the To verify that a particular permutation of a given combi-
ensemble average. In other words, the DOS is adequatelyation of stable graingF s, 6,4t satisfies N3L, it is neces-
characterized for the present purposes by the two-goint  sary to check every contact in the permutation. All permuta-
tragrair) force correlations and the resulting correlation oftions of this combination have the same JPDF of forces and
loads in neighboring grains. Therefore, the geometric closureontact anglesPr,(F, 8) =P y(F, 6/{F 5, 0.4}, whatever its
of force loops can be ignored when deriving the statistics oform may be. Randomly choosing one contact from the set of
single-grain states. There are important arguments supportingiese permutations, a contact fofeg; at angled, ; therefore
the FSA and they will be presented in the discussion sectiorhas the probabilityPg4(F,z, 6,5)dFdé that it will satisfy
N3L with its neighbor(The two differentials reflect the fact
C. Phase space operations to quantify the nonuniformity that N3L reduces the solution space by two dimensions per
, ) ) contact, thereby taking out the extra dimensions introduced
_ Although Edwards’ flat measure is uniform across the rés, g s ) The probability that an entire grain configuration
gions of accessb!e phase space, the volum(_a of those regiogs,.vn from this set of permutations will satisfy N3L
is not uniformly distributed across the coordinates. The prog,; its four neighbors will be called

gram is to change coordinates in a way that eliminates deltqu(F tsesFonr 61y .. 0.4)d*Fd*6, written for compact-
function constraints from the right-hand side of €2, rad- 54 %(F o3, 0,,5)d*Fd*6. It may be written as a functional
ing the lack of uniformity in the constraints for a lack of .

flatness in the measure. When only extensive, conserve

quantities remain in the list of constraints, then the method of Y2F o, 0up) = L1 Peo(F g, Oup) - (8)
the most probable distribution may be used, relying on the 8

method of Lagrange multipliers to conserve those quantities, . _ . . .
This expression treats the contacts on the neighboring grains

as if they are uncorrelated because this is a packing that was
drawn randomly from the set of all possible permutations,

In this context the term “grain configuration” refers not including the ones which are physically unrealizable. There-
only to a grain’s contact geometry but also to the set offore there are na priori correlations between neighboring
forces upon those contacts as defined by the locus in phaggains; such correlations ariseposteriori by selecting the
space. The form of, itself does not require neighboring subset of packings that satisfy N3L.
grains to satisfy N3L, and so the vast majority of loci include  Because of this statistical independence, the fraction of
neighboring grain configurations with physically unrealiz- packings that satisfy N3L for all of its grains is likewise
able forces. This mathematical abstraction enables the analgimply the product over the probabilities that each of the
sis. individual grains will satisfy N3L with its own local neigh-

If we wished to neglect N3L, then we could proceed with hors. (The FSA appears implicitly in this stateméniow-
the remainder of the analysis, obtaining the hypotheticabyer, the product ofY%(F*#, ¢*8) over all @ accounts for
DOS for regions of this space having stable, cohesionlesgyery contact in the packing twice, once with each grain
grains, write the state-counting entropy, and then maximize isharing the contact. For the cases where N3L is in fact sat-
subject to the conservation of total loads and fabric. Thissfied, the double accounting of contacts will appear as pairs
would produce the most probable distribution for all possiblegt Ps, factors having identical arguments. Hence, the prob-
permutations ofN stable grain configurations where the apility that the entire packing will satisfy N3L is the square
grains are mechanicallpdependentHowever, it turns out oot of that product—explaining the use of the square expo-

that N3L is not negligible: by considering instead all the nent in Eq.(8). The fraction of permutations that satisfy N3L
possiblecombinationgrather than all possiblpermutationy g

of N stable, independent grain configurations, we note that
some of these combinations can be mechanically connected
into a greater number permutations satisfying N3L than can
other combinations. Hence, those combinations are the more
entropic ones, the ones which represent the greater numb&his calculation does not handle the boundaries of the pack-
of metastable packings in the phase space. Therefore, to findg (unless they are periodicbut we are concerned with the
the most entropic combination of stable, independent graistatistics in the bulk in the thermodynamic limit where the
configurations, we will mafy,— Ss, a space where the axes boundaries are pushed out toward infinity.

are the same as i, except that they are not sequenced to Now the DOS may be mapped from the phase space to
represent a particular permutation of the grains. Whereas the assembly spacg,— Ss:

1. Newton'’s third law

N
Dpa{F ap, Ougt = [T Y(FP,67P)dNFd?No. (9)
a=1
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73(3){[:&3' 0} = Sfabric Pyy) 5 > w,, - W, tained withinY must be zero for negative qrgumerﬁtsOn_
o the other hand, it will prove convenient to define
W(F 5, 00p) =IT51O(F 5) WhereF ,5=F (Wi, Wy, O,p)-

N
X 5(2 Wy — wy) [T Y(Fop 0,5 d2NFdNg
@ a=1

D. State-counting entropy and its maximum
4

4
><5<2 ﬁaﬁ) 11 O(Fp). (10) Randomly .drawing packings from the regionsSfthat .
=1 B=1 have a specifie®,,5(Wy, Wy, 61, ... ,0,) [and hence a speci-
fied fabric and a specifieB4(F, 6)], the fraction of packings
in which all grains will satisfy N2L without cohesioand
satisfy N3L with its neighbors is

The tilde onp indicates that this density is in an assembly
space.

2. Newton'’s second law

To quantify the effects of N2L, note that E(p) can be
used as a many-to-one mapping fréign—S,, which will _ 2N
have coordinate$w,,, 6,5 é=x,y;@=1,... N;g=1,...,4 DWey, 0ol Prgl = 1, Y(F o, 00p)[Prol W (F o, 6,00
and is another assembly space, representing combinations of _
mechanically independ)éntp grain Eonfigura'fi]ons. Thus, the =1L - TL DY iy, O - Oan) [P
mapping reduces the dimensionality of the space by two per X W (W, Wy, By -« - 40 ]7ikimnd2N G
grain, just as N2L reduces the dimensionality of the solution ooy e T '
space by two per grain. However, the reverse mapping is one
to one because the localized isostacy of the grains determines
the four contact forces when the supported loads and foufhere Vijidmn(Wxi» Wy, 01, - - ,0an) iS the discretized version
contact angles are specified. Thus, of all the point;ithat  of the distributionP Wy, Wy, 64, ... ,6,), normalized such
map to the same point i, at most only one represents a that S Epmijmmn=N. It was obtained by discretizing the
stable packing and is occupied, the one which is specified bMNvay: 6y,...,0,) space into bins of volume

solving Eq.(5) for Fg with wy=wie"=w®™ andw=w{®  (Aw Aw, A6;--A6,)=(Aw)2(A6)*. Note that in Eq.(13),

(13

X
— ott. H H H H
=w". This system of equations is nonsingular except fore product in the first line is over the grains whereas the

some precise alignments of contacts on a grain which we cafrodycts in the second line are over the discretized intervals
ignore. The Jacobian of transformation f&y— 5, is Simple o each of the variables,,w,, 6, ... ,6;. For compactness
to write and is a functional of the fabric. Instedd,is rede- e will write

fined to produce the Jacobian wighfunctions:

Yz(Fa,aa>=ffwad4FHP (Fupr Oup)
o o g DWe, O Pee] = T -+ TI 1Y oW, ] .

X 8(Wy,, — F 41 €080, — F 44 COSH,4) (14)

To find the most probablé,,,.(wy, Wy, 61, ... ,0,) that
results from the nonuniform DOS of E@l2), we likewise

X 8(Wy, + F €080, + F,3C0S0,3)

X 8(Wyo = F a1 SiN 6,1 — FypSin6,)

X Wy, + F o3 SN O3+ F g SIN 0,4). discretize 5, into cells of volume (dw, owy, 56, - 50,)N
(11) where(8w)?(56)*=(Aw)?(A6)*/S, whereSis a large integer
andS>v,  ,0(i,...,n). The number of cells i, which
(Note that for simplicity this has been written with quarteredmap to a particular SdtVi,...,n} can be estimated by explicit
fabric.) With this, the DOS in5, may be written counting,

W, 0,5} = Slfabric Py,) 5(2 Wy, — wx)

(S=1+wy, )
N w{Vi,...,n}:H'“H[51,—|n|
oN i n ( - )(Vln)
X 5(2 e Wy) TT Y (W Wy, 0,50 02N0
a L X (2 Y )' (15
4 i n
X H ®[Faﬂ(wxwwyou 0&,8)] . (12)
A=l and in the limit asS— « the estimate becomes exact. How-
) ) ever, becausg, is an assembly space, the axes can be rela-
3. Cohesionless grains beledN! different ways to represent the same combination of

The product over Helmholtz functions may simply be grains. Removing this physically meaningless repetition, we
omitted if it is remembered that the:,(F, 6) factors con- omit the factorial of the sums in the second line of Etp):
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P2W49(WX1Wy! 0,8) = Y(WX1Wy! GB)\P(erwy! 0[3)

- : |
oy )= II---11 {%] , (16) X G(6)e ™MWy, (19
: n LS=DH 0! where the fabric partition factd®(6) =G(6;, ... ,6,) derives
where the tilde onw indicates that this is the “correct from exp(—vy, .,) in the continuum limit.

Boltzmann counting” for an assembly space, in which the Note that\, and\, should not be confused with the decay
grains are indistinguishable. constants of the exponential tails in the empirical PDF’s.
The number of state® in the ensemble mapping to the Most (if not all) of the exponential behavior in Eq19) is

distribution{v; .} is thereforew{; .} times the DOS in contained in the form ofY’ because it is a functional of

those cells of5,: Peo(F, 6). 1t will be shown in a numerical solution of the
(S-1+v ) isotropic case using an approximation methitater in this
v J=11--11 ST TR papej that the value of\,=\, is approximately zero. This
i n LS=D !y, p) should not be the case in general, however, because these
_ two parameters provide the only information about stress
Vi .ng2N . . .
XNULYG Wil nd 0, (17) anisotropy in the equation.
where we have used the notation of Eti) to express the The fabric partition factoG, along withY and¥, deter-

DOS. Taking the logarithm, it may be maximized with re- Mines the partition of fabric between tite,,w,) “modes.”
spect to v, . If we discretize the JPDF of fabric Integrating Eq(19) overw, andw,

Pag(01, ... ,04) = piamn(bk, - - ,6n) such that Zy- X tuymn o

=N, then each value QfymsJk,I,m,nis a conserved quan-  Py,(6s) = G(6p) J f dPwY We MMM = G(Gp)H(8)p).
tity according to the definition of the ensemble in which 0

fabric is spgcified. The consgr\_/ation\MK, W, and yjmn are (20)
enforced via Lagrange multipliers,, Ay, and yimn respec- ) o )
tively: Assuming the standard result of statistical mechanics, one
form of P, will be found in the overwhelming majority of
J the occupied phase space, and so in the thermodynamic limit
In Oy, -\ i Wi . ol " . :
pr___’u[ ol X(Z % Vivoon X'> we may treat fabric as if it is partitioned by with a fixed
form in all of phase space. This factor is not a functiomgf
- )\y(z e Vi,,_,,nWyj> or wy,. However, the partition is not an equipartition because
i n of the influence ofY andW. The former is variable over the
N .. _ _ range of angle configurations within each mode, and the sec-
% % 7“""’”(2 ; V""-’”)] 0. (18) ond is a truncating factor which limits the range of angle

_ configurations differently for each mode.
The calculus is performed using Stirling’s approximation

and an expansion of the logarithm in a Taylor series;of ,
where necessary. Taking the limit fBr— o while conserving
N and then taking the continuum limit obtains The JPDFP,,4, can be collapsed:

E. Recursive “transport” equation

1 4 o0 2
PFH(F,a)zzgl J JO dzwffffo d*05(6 — 6) SF — F s(Wy, Wy, 01, ... ,62) TPowag(Wy, Wy, 0, ... ,04). (21

Inserting Eq.(19) into Eq.(21) results in a recursion dPg,:

4 e 2
1
P,:(,(F,e):zzl J JO dPwe MWy f f f JO d*05(6 — 6) SF — F (W, Wy, 61, ... ,6,)]
4

w0 4
X G0y, ....09]1 [Fy(wx,wy,al,...,m)]ffff d*F I [Peo(F} 0912
0

ry 51
X Wy = WY (F 1, 01, ... Fi, 00wy = Wi () ]olwy = WiP() ]l wy = wpo ()], (22

051303-7



PHILIP T. METZGER PHYSICAL REVIEW E70, 051303(2004

This can be simplified by taking advantage of symmetries in Region where set of
the ensemble. For example, in the case in which fabric is not F; .6 permuted nflghbors
quartered so that every conta@=1,...,9 is statistically Fa .6 attempts wy

similar, then the summation may be removed.
The dependency ofY upon the form of Pgy(F,6)
:PFQ(F,0|{W§’0{,0&B}) reveals that the DOS in a granular

Stable Region,
assumed flat Y, (wy,w))

ensemble is self-organizédccomplished by the packing in Wbt

its dynamic state as it sought a stable locus in phase space 4

and cannot be given a simplist&cpriori characterization in

a way that is analogous to tleepriori uniform characteriza- ket
X

tion of a thermal DOS. The form dPz,(F, 6) derives from
the DOS nonuniformity andice versaIn principle, this re-
cursion is the unique solution for this special case, assuming Fi.6
that correlative information is nonrecursive in the ensemble F .6
average and that Edwards’ flat measure over all metastable
states is correct. FIG. 2. Schematic diagram of eight-dimensional space to illus-
trate the mean-structure approximation. The MSA assumes that the
probability for a grain to satisfy Newton’s third law with its neigh-
F. Mean-structure approximation bors does not vary over any of the configurations of the grain hav-
ing fixed Cartesian loads. In fact, the exact probability does not
The recursion equation can be solved using Monte Carloary too widely for the vast majority of those grain configurations.
integration. Efforts are underway to obtain the numerical soTherefore, the MSA should produce a distribution of grain configu-
lution, which shall be presented in a future publication. Forrations that is a good representation of the exact ensemble. The
the present an approximation will be introduced, Simp"fyingindividual circles represent the region where random grain configu-
the recursion equation while yet providing sufficient accuy-rations, taken to be n_eighbors for the grain in_ question, would a}t-
racy to demonstrate the principle organizational features ofMPt to apply a particular load on each hemisphere of that grain.
the ensemble. The approximation has value in its own righirhe intersection is the stable region where the MSA applies.
because it will isolate and identify those organizational fea-
tures. important to distinguish this from the mean-field approxima-
The approximation is obtained by projecting the DOS intion (MFA), which is useful for thermal systems but not ac-
S4— Ss, Where the latter is the subspgee,,w,,}. This pro-  ceptable for granular packings. The reason that the MSA may
jection is performed by integrating the DOS across all thebe adequate where the MFA fails is because it preserves the
angle axes. For a given pair of Va|UGB><1,Wy1), the evalu- exact intragrain correlation of contact forces by N2L and also
ation of Y(Wyy,Wy1, ,0) # Y (Wyg,Wy1, 6,5 for {0}, # {65}, the approx_imate interg_rain correlations(m&a_,v_vya) by N3L,
in general. That is, certain contact angle configuratighg  both of which are lost in the MFA. The validity of the MSA
will yield a greater probability that the grain will be consis- Shall be evaluated in the discussion section.
tent with their neighbors than will other contact angle con-  The most probable®,,(w,wy) to occur in theSs sub-
figurations. Therefore, information is lost in the projectionspace can be obtained directly by integrating @) over
into the S5 subspace. Nevertheless, this loss of informatior@!l angles:
may not be so great that it blurs the principle organization of
the DOS. Arguments can be advanced to show that, over the

- . . . 27
distribution of all contact angle configurations where the P oWy, W) = € MMMy f J f f d*6G(0)
grain is stable, 0

X W (Wi, Wy, 05) Y (Wy, Wy, Op) . (24

Y (Wyq, Wy, Op) = ?(leval) (23)
We wish to simplify this in the MSA. With some manipula-

for moststable grain configurations. Wheredisis a truncat- L
9 9 It|on it can be shown that

ing factor in the DOS, defining the region where individual
grains are stabléy is a scaling factor in the DOS, indicating
how often particular grain configurations will occur in the o
ensemble based upon the probability that they can satisfy y(w,,w,, 6 ):J J Jf d W[ P, . (WHE™ 6,)]42
N3L with their neighbors. Equatiof23) claims that this scal- e 0 a0 Tp
ing is strongly dependent upon the valuesagfandw,, but . right 1o o left
when varying the contact angles it does not vary too much X oy = Wi ) wy Wyp)é(wx W)
over the majority of that configuration space. This allows the X 5(Wy - W§°“), (25)
S,— Sg projection to be simplified.

The approximation shall be called the “mean-structure ap-
proximation,” (MSA), and it is illustrated in Fig. 2. It is where
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Pt W™ 0p) = Phagg W™, . ’\:VSOtE Op) W (W, W) =f J J f ’ d*0G(6,)
[ [ e o )
X S - Fy cf)sel - F4C0S0,) ) ;1;[1 OLF, (. B - 8], (32
X S(WE" + F, cosé, + F5 cosby) we may write,
X SWP = Fy sin 6, — F, sin 6,) Paw(Wy, W) = €% MY (W, W)W (W W) . (33)
X S+ F3sin 65+ Fy sin ). (26) Finally, writing the DOS inS,

This can be interpreted as the JPDFattemptedoads and
contact angles that the set of all possible packing permuta-
tions (with the specifiedPg,) attemptsto place on any one
grain. The star indicates that this is only a conceptual distri- X 8, Wy — Wo) 5, Wy —W). (34)
bution, not found in stable packings. It can be viewed as a a @

mean-field calculation, where the incoming forces have been , L _ .,
drawn randomly from the entire set of grains in the packing_ W& may identify ¥(w,,w,) as the “grain factor” and
permutations. Its domain is therefore not restricted to the set(w,,w,) as the “structure factor.” These are the primary

of forces that would make a grain stable. Because of this, thgatures of nonuniformity in the DOS. Whereds derives
pair (W;9",wi®) should not be too strongly correlated to from the configuration space @fdividual grains(cohesion-

left ot ; ; .
(wie", wy™) after integrating out the angular dependence: |ogg N2L), Y derives from the configuration space of grains
P (9Nt \WOP \pfeft ooty _ px (yight |y fop) ey Jeft |, oty connecting together to form a packing struc'_cL(lre3L). N
(W Wy WA W) = P (W, WG ) P (W5 4™ These two factors were so named because their separability
(27) " (in the MSA) and their roles may be considered somewhat
All the angular content oF is in F’wa(vv';em, 0s), SO we analogous to the separability and roles of the atomic form
make the mean structure approximation factor and structure factor of x-ray crystallography.
. N . The meaning of¥ can be illustrated easily through a
Pruag W 0) = Pl (W*M)/167* (28)  change of variables. We notice that for rigid, cohesionless
grains there is no inherent force scale and hence stability
must be independent of the overall scale of the forces. Thus
Y (W, Wy, 6,) =~ [pZW(WX,WX,Wy,Wy)]UZ/A,ﬂi (29) it is convenient to change variables:

5(5){mewya} = N' H Y(wawya)a(wxwwya)

for moststable grain configurations, so that, by E25),

for most(wy,wy, 6,). Using Eqs(23), (27), and(29) we de- s = Wya ~ Wy f = We W (35)
fine o e Wya, a = Wy Wy,
?(W)awy) = P}, (W, W,) 472 (30) The stability of theath grain is therefore a function af, and

the four contact angle§d,s}, only. With the Jacobiad=t,
Pou(Wy,Wy) may be viewed as a mean-field calculation of Eq. (24) can also be written
attemptedoads(for packing permutations having the speci- _ _
fied Pg,), which the half-space of the ensemble attempts to Pg(s,t) = Y5 ) Wy(s)e MI2-uhysiz = (36)
place on the corresponding hemisphere of a gfineach
of the two Cartesian loaglsand where the mean field in-
cludes the unstable regions of the phase space. However, it Yst(srt) :t\?[(l +9t/2,(1 -9)t/2] = (Wx+Wy)\?(Wx,Wy)
must be emphasized that this is not a mean-field calculation (37)
of loads actually placed on the grains, but rather it is the
approximate scale measuring how often particular modeand
will satisfy N3L and therefore occur in the ensemble. The _ _ _
validity of the approximation depends on the relative weak- Vy(s) =V[(1+9t/2,(1 -9t/2] = ¥(w,,w,).  (38)
ness ofY’s dependence on the contact angles for most stabl
grain configurations. Using the MSA in E¢R4),

where the notation

Ras been introduced. Note tHatin Eq. (32) is insensitive to

the scale of, and cares only whether it is positive or nega-

tive, and hence the¢ does not appear as an argument of

2 q’S(S)' . .

% d*0G(0,) W (W, W, 6,). In these coordinates E@32) may be solved very effi-
ffffo (65 (W, Wy, ) ciently by Monte Carlo integration. This has been performed

(31) for the case of quartered isotropy. In the MSWA,does not
affect the fabric partition, and hence it is easy to find the
Defining fabric partition factor. The product of the weighting for the

Pow(Wy, Wy) = €% (wy, W)
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FIG. 3. Grain factor fit to Eq(39).

quartering bias with the weighting for the fabric partition

was obtained empirically by adjusting as required in a Fou-
rier decomposition to achieve approximate isotrdpy 6) L
~1/2m. The numerical result for that case is fit well by a 0

1 2
Gaussian: f=F1039
\ﬂs(s) = \;Ee—csz, ls| <1, (39 FIG. 4. Horizontal cross sections through this plot are the con-

ditional PDF forf, the normalized contact force magnitudgg)
with ¢=7.9. It is shown in Fig. 3 with the fit as the dashed =0.39 whent=1). White represents higher probability density. The
curve. This indicates that in the isotropic case the volume ofertical axis represents its dependence uponsthariable with a
a grain’s stability space is a Gaussian function of the indiixed t=1. Varyingt only rescaled.
vidual grain’s load anisotropy.

In contrast to the simplicity of the above result, the form,here only one term of the sum is needed in many cases due
of Y depends uporPg, and hence can only be found by to the symmetries of the ensemble. This reflects the MSA

solving the transport equation. because it assumes that all grains in the s&syg mode
contribute to the integral according to the same weight. It can
G. Mean-structure transport equation be found by very easy Monte Carlo integration, and the re-

Just as Eq(19) can be solved recursively, giving us the sult for the case of isotropZe,(F, 0]s, 1) =Ce(F|s, 1)/ 2,

recursive “transport’ equation, so can E@3) be solved IS shown in Fig. 4. . -
recursively, giving us the “mean-structure transport equa- COMbining this PDF with Eq(33) and the definitions of

tion” (MSTE). Crp ¥ andy,
To develop the MSTE, we convert the load distribution of
Eqg. (33) into a contact force distribution. This cannot be 5 am .
done simply by collapsiné.,,, since it does not contain suf- Pro(F,0) = _16772 d d"6G(6p)

ficient information. However, the variables may be changed

if we first obtain the joint conditional PDEFH(F,0|WX,Wy), X 80— ey)é[F _ Fy(wx,wy, o ... 0]
so that )
© o x [T O[F (w,w, 6y, ... ,0,)]
Peo(F, 6) :f f d WCF(,(F,0|WX,Wy)P2W(WX,Wy)_ (40) 1
0 X e_AxWX—AyWyPEW(WX,Wy)_ (42)

This PDF can be obtained easily through the same change of
variables introduced previouslyw,,w,)— (s,t), because
Cry(F, 6]s,1)=t-Cg,(tF, 6|s,1) and the conditional depen-
dency is reducible to the variable, alone. This may be ob-
tained by straightforward integration:

P5w(Wy,Wy) used in this equation may be obtained a num-
ber of ways that should be equivalent within the accuracy of
the MSA. Two of these have been used in the numerical
results and were shown indeed to produce identical results to
within the statistical precision of the data. The first is purely

27 consistent with the MSA, assuming no necessitydaqriori
Cey(F,0ls,1) == E ffjf d“eG(eﬁ)a(a 0,) correlation between the loads and the contact angles. Fur-
thermore, it assumes reopriori correlation betweem, and
><6[F ~F(s,1,64, ...,00)] wy. Correlations arise only after throwing out unstable grain
4 configurations. That is, it assumes a fixXdover the union
x [T O[F (s.1 6, 0] (41) of two circles in Fig. 2, not just the intersection of all four
=1 ’ (the gray regioh Imposing¥ then throws out grain configu-
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rations outside of the gray region. This method is tribution P;(f)=(F)Pg(f(F)). The Cartesian force compo-
nents in thex direction are denoted Wy,, their distribution is
P«(F,), and their mean igF,). The corresponding normal-
ized Cartesian forces afg=F,/(F,), which have a distribu-
tion Px(fx) :<FX>PX(fX<FX>)'
(note that all four contacts are treated as if distinctly different The MSTE in the previous section was solved in a Monte
despite the fact that ar hemisphere and & hemisphere Carlo process for the case of isotropic stress and fabric, with
overlap in one quadranand one further simplification. It was found thag and A, were
. . R not exactly zero in the MSA, although they were very tiny,
Pow(Wio Wy) = Py (Wi Py (W), (44 —0.01, so that the exponential factors were not exactly unity
where but were nevertheless negligible. Therefore, rather than
implementing the exponential weighting exactly, the forces
2m were simply rescaled with a flat factor in each iteration to
PlndWy) = f f d’F J f d 91_[ Pro(F g, 6p) prevent incremental growth. This approach is reasonable be-
cause the phase space for rigid grains has no inherent force
X 8w, — F, cosé, — |:2 c0S6,), (45)  scale, the growth was very small, and the growth was bal-
anced in thex andy components. Hence, the form of the
o 4 DOS should not be greatly affected by this flat rescaling.
Pry(W,) = J f d’F f f d?0

w, = F4; cosé; + F, cosé,,

Wy, =F3sinf;+F,siné, (43

H Peo(F,.0,) The MSTE was shown to converge efficiently to the same
stationary state after beginning from several different initial
distributions. The original work was performed with Math-
ematica solving for approximately 5500 grains. These results
The second method, which will also be used in a Monteare presented in this paper. Ongoing efforts WAIRTRAN

Carlo solution of the PDF's, attempts greater fidelity to thedemonstrate that converged solutions can be found for 1
micromechanics by imposing priori correlation between X 1P contacts in about 1 min on a desktop computer. It is
Wy, Wy, and{6g}. If the MSA is valid, then imposing these quite easy to obtain data sets of'4@rains or greater, mak-
correlations should be largely superfluous. Comparing théng it possible to study joint or conditional distributions of
results of these two methods will therefore test the MSA inthree or more variables with smooth statistics using only a
Sec. IV A. The second method, which for simplicity is ex- desktop computer. For some applications this provides a tre-

X 8wy — F3sin 63— F4 sin 6,). (46)

pressed here for the case of quartered fabric, is mendous computational advantage over the fully dynamic
simulations.
Wy = F1 COS6, + F; COS 05, The P;(f) resulting from the transport method was shown
earlier in Fig. 1. It has all the key characteristics of granular
Wy =F, sin 6, + F3sin 65 (47)  contact force PDF'’s. A fit, shown as the smooth curve in Fig.

1, was obtained with the form proposed for the data from the

(note the shared contaky), and carbon-paper experimental methp:

Powas(Wso Wy, p) = f f f d3FH Pry(F,, 0,) P(f) =a(1 -be e, (49)

X 8wy — Fy cosal -F,cos6,) Using the values=3.28,b=0.85,c=1.56, andd=1.56, the
fit is excellent and is in quantitative agreement with the
X 8wy —F,sin6,-F3sin6s). (48)  range of values reported from both experiments and numeri-
: : : cal simulations. It should be noted that here, as in most of the
duérgsger:sgh/leggerrecgutrr;(iasﬁ ]:quTastig?WF;:;? vI\E/ﬁi.c(r?Z?sp;ﬁe empirical digtributions[?,ll,la,.d is susp?ciously clqse to _
MSTE. It can be simplified by taking advantage of the vari-77/2' A plau_5|ble reason why th_'s valu_e arises under isotropic
ous symmetries of the ensemble. conditions is prpwded in the dls_cussmn section.
The two different forms ofP, produce two different For the special case of true isotropy in which
forms of the MSTE. This is striking because one fornPgf,
contains(Pg,)® whereas the other contaiiBg,)*. The abil- Pro(F, 0) = Pe(F)Py(0) = Pe(F)/2, (50
ity of these two very different transport equations to produce

the samePr, depends upon the validity of the MSA. changing variables to Cartesian compondrisF cosé is

effected in probability theory by the straightforward

Ill. RESULTS 2r % PL(F)
) ] PX(FX)=J def dF 8(F,—Fcosf) (51
Here, the following nomenclature is used. The vector 0 0 2w

magnitude of the contact forces are denoted-byheir dis-
tribution is Pe(F), and their mean i¢F). The corresponding or by evaluating the inner integral and expressing as normal-
normalized force magnitudes areF/(F), which have a dis- ized forces:
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-1

-1.0 2l
L[ P(£)] In[P:( f)]

FIG. 5. Semilogarithmic plot of the PDP,(f,) of the normal-
ized x components of the granular contact fordgsF,/(F,). The
smooth curve was obtained from E2). The semilogarithmic ot
inset shows the behavior belofy=1.

~ E@ 2
P.(f,) = 7T<Fx>f0 dopP;(f, sech)sech, (52) St

where the symmetries of isotropy were used to reduce the

range of integration i. Numerically integrating thig15] 7 21 f

with the Ps(f) of Eq. (49) yields the smooth line in Fig. 5. It In[P( f)]

fits the numerical Cartesian component data from the trans- . .

port algorithm (shown in the same figuyeover the entire FIG. 6. (Top) The normalized Cartesian force componefiis

range. It has a singularity 4,=0 and is monotonically de- from the mean-structure transport method fitted to &§), which

creasing as demonstrated in numerical simulatjadslg. It appears to be the natural form. The inset shows the behavior below
is not purely exponential, the two knees being indicative of afgnt g%fﬁfé?g];jhi ttfgcricteo rgagg'tugﬁj f:;:‘;t ;hhi mseflhne-stt)r:k(]:;urgr
summation ofith-order modified Bessel functions of the sec- o >Po" itted to EqS6). The | W Vi
. . - below f=2. These two fits analytically transform to one another
ond kind, K,(B,f,), functions which result naturally when
. . through Egs(52) and(55).
exponential forms are used f&%(f) in Eq. (52).

The only problem with the fit shown in Fig. 1 occurs in
the region of very small forced,<0.2. This is the same
region in which the form of Eq(49) could not be experi-
mentally verified due to calibration limits. Therefore it is not
known whether this is the correct empirical form in that re-
gion [36]. A better fit can be obtained using another form so

hat it fi llentl h i includingg 1.
that it fits excellently over the entire range includines (52) cannot be deduced by probability theory becaiysend

This will be accomplished starting with the observation " . . .
noted above, that the two knees in Fig. 5 are indicative of are not stat!st|cally independent. Therefqre, mvelrt!ng ELs
change of variables to go froifi,, 6) — (f, 6) is not trivial,

Kn(Byf,). These two knees appear very dramatically in a ro-

tation of the coordinates, a rotation which is most easilyeven in this isotropic case. Nevertheless, the exact relation-

understood if performed manually by lifting the edge of theShip can be derived using an approach which is equivalent to

page toward the eye and rotating it so that the line of sight &€ Mathematics of x-ray tomograpf§8]. The result is
parallel to the segments of the graph in Fig. 5. The fit to 1 (2
Pe(F) = EJ

be obtained only by including K, term. This term has infi-
nite probability density forf,=0, but the singularity is very
narrow and hence cannot usually be seen in a finite set of
empirical data that has been aggregated into bins of finite
width [37].

The transformation integral which is the inverse of Eq.

P:(f) will therefore be accomplished by fitting the natural doPy(F secé)cs? ¢ (54)
forms to P,(f,) and then mathematically inverting the trans-
formation of Eq(52). The simplest fit to within the statistical . i normalized forces

accuracy of this data set appears to be of the form

0

<F >1 /2
2 Pi(f) = ~>=-= doP,(f sech)cse 6. (55)
Pu(f,) = C1 2 anfiKn(Bify), (53) (P fJo
"o This relationship is fascinating because we know that
with ay=2,a,=-2,a,=11, andB,==/2, and whereC, is for =~ =F cosé and therefore~,<F for all 6, however, this rela-

normalization. The fit is excellent over the entire range, distionship compute$ in terms of F,=F secd so thatF,=F
playing all the correct knees and piecewise slopes as showfor all 4. This says that the probability of finding a contact
in Fig. 6 (top). The shape of the knee closestfie=0 could  force magnitude- is a weighted sum over the probabilities
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FIG. 8. Semilogarithmic plot of the Cartesian load PDF, the
PDF of the total normalized load borne by each grain inxtee y
direction unrotatedsolid line), rotated /6 radians(dotted ling,
and 7r/4 radians(dashed ling

P f)

P = (&3 ) e (57)

If the distribution of F, had been purely exponential and if
. there had been no correlation between adjacent valués of
5 on the same grain, then this should have had values of
=1.0,8=2.0, anw,)=2(F,) as in the uniforrg model. We
FIG. 7. (Top) Linear plot of the normalized Cartesian force do find an excellent fit over the entire curve using this form,
components, from the MSTE fitted to Eq(53). (Bottom) Linear  and we do find thatw,)=2.0(F,), but the fit is obtained with
plot of the force magnitudek the valuese=3 and8=4.

By comparison, when the Cartesian axes are rotated the
for all the Cartesian componenf that are too large to be grains in this model may have one, two, or three contacts on
relevant. Nevertheless, it is mathematically correct. the sampled hemisphere instead of the strict two contacts per

Using Eq.(53) in Eqg. (55), we obtain hemisphergone contact per quadrarthat was defined for
the unrotated axes. THg,(w) for these rotated axes are also
shown in Fig. 8. They begin with finite probability density
for zero force instead of beginning at zero, and the finite
value is maximized when the rotation4g4 radians because
with C,=C,, by=ay, bi=ma;/2+a,, b,=ma,/2, and B  this is where we obtain the maximum fraction of grains hav-
=B(F)Y/(Fy=~(m/2)%. This result fits the numerical data ing something other than two contacts on the hemisphere. It
from the MSTE excellently over the entire range folas  Wwas found in numerical simulationid4,13 that when the
shown in Fig. 6(bottom). It exactly matches the finite and grains in the bulk are segregated into separate populations
nonzero value oPg(0)=(7/2)C,a, that occurred in the nu- having one, two, or three contacts on one side of the grain,
merical data, so we see that thag term that madeP,(f, respectively, then the Cartesian weight on the grains which
—0) infinite is the saméy, term that make$;(0) nonzero  Support two or three others hasPg(w) which does go to
and finite. The linear plots of Eq&53) and(56) are shown in ~ Zero probability forw— 0. It is the population which sup-
Fig. 7 in order to show that the curve fits are truly good inPOrts only one contact which has a nonz&gw) because
the region of weak forces, even without the compression of 8he load in that case is closely relatedRgf), which itself is
logarithmic axis. nonzero at zero force. Thus, the MSTE results are in agree-

Figure 8 shows semilogarithmically the Cartesian loadment with this aspect of the simulation data, as well.

PDF P,(w) produced by the MSTE, computed for several The distribution ofs andt variables resulting from the
different rotations of the Cartesian axes. These distribution§ansport method are fit excellently by

have an exponential tail and a peak nes= 1. The near

similarity of the rotated plots indicates approximate rota- [\

tional symmetry for this nearly isotropic model, despite its _ TN U sy -7.02

quartered fabric. The variation in the region of weak loads is Psis,t) = A005< 25)<(t>> e, (58
the result of that quartering. In the unrotated axes, wherein

the grains have exactly two contacts on each hemisphere, we

find P,(w) —0 asw—0. We may fitP,(w) in these unro-  Thus, by comparing Eq$39) and (36) with \,=\,=0, the
tated axes to an exponential with a power law prefactor  structure factor can be identified:

2

C

Py(f) = %e‘ﬁfz ba(F)", (56)
n=0
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(a)

FIG. 9. Structure factor obtained
from the mean-structure transport
method, fit to Eq(59) for the case of
isotropy with(wy)=(w,)=(t)/2=1/2,
(a) semilog plot oft dependence(b)
linear plot ofs dependence.

— T t\4 v sure of every “loop” of grains in a packing. Without this
Yslst) =co PRARY A Y9)Yi(t). (59  closure, the chains of contacting grains are allowed to branch
out ever increasingly in all directions and overlap into one

Yt and ?S resulting from the transport method are shown inanother’s space. Geometrically, then, omitting this constraint

Fig. 9 with smooth curves from E@59). does not prodl_Jce a good approximation toa packing. How-
ever, it may still be an excellent approximation as far as the

statistics of single-grain states are concerned.
IV. DISCUSSION It has been showifl3] that contact forces on the same
A. Validity of the approximations grain are strongly correlated with one another. There is anti-
L . . correlation for contacts closer together thaé~ 0.4 radi-
The two approximations which enabled this ensemble, s ot angular separation and a positive correlation when the

analysis are th‘? flrst—shc'jlll_appr:)xm;]atmn and .the T.Zanéngular separation is greater than that. The correlation con-
structure approximation. Ultimately, the quantitative vali a'Fnues to increase as the contacts are increasingly distant

tion of these requires a careful comparison with numerica. om one another but still on the same grain. The correlation

simulatipn daFa for particuIa}r states of the stress, fabric, an ramatically drops immediately thereafter when the distance
rheological history, and this has not yet been performedy o yeen contacts becomes greater than one grain diameter.
Meanwhile, the qualitative validity is already evident as dis- The strong intragrain relationships make sense due to the
cussed below. requirements of static equilibrium of the individual grains.
. Contacts on the same quadrant compete for a share of the
1. Validity of the FSA same load and hence are anticorrelated. Contacts opposite
Beside the constraints which defined the ensemble’s DOne another transmit load through one another and hence are
Eg.(2), another geometric constraint is needed to ensure clgsorrelated. Simplistically we could expett=1/2 to be the
crossover point of no correlation as illustrated in Fig. 10.
This is approximately correct, and the error is probably at-
tributable to the existence of three-grain loops, history-
dependent frictional effects, and so on.
Likewise, the sudden drop in correlation after one grain
diameter of separation is also understandable in terms of the
local mechanics. It is true that neighboring grains share a
common contact so that contacts on adjacent grains are just
two sequential two-point correlations away from one an-
other. This induces correlations between them. However,
these intergrain correlations should be primarily the result of
the information contained in the sequential two-point intra-
grain correlations because the lack of cohesion makes the
grains otherwise(largely) independent. Additional con-
straints are not found in the packing until entirely closed
loops of grains are considered so that the sequential two-
point correlations come all the way around the loop back to
the original grain, again. In 2D the typical closed loop con-
sists of four grains, each grain being a vertex between a pair
FIG. 10. Contacts that are approximatety2 radians away Of contacts that form the loop. The four-point correlation
from one another on the same grain are only weakly correlated agonstructed as three sequential two-point correlations going
illustrated by the closed loop of four grains that allows any combi-the long way around a loop would undoubtedly be very weak
nation of weak and strong force chains to pass through it. If thecompared to the single two-point correlation going the short
angles were precisely/2, then the four force chains in this figure way around the same loop, since the short way is intragrain.
would be completely independent. Hence, the extra correlation information imposed going the
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long way around the loop must be very weak compared to 3 '
the information already present intragrain. It should therefore
be an excellent approximation to neglect this additional in- "

formation and consider only the intragrain relationships in - "

defining the DOS. This is the essence of the FSA. E '
This is not a rigorous argument because we should con- 4

sider the sum of information frorall the loops in the pack-

ing that contain the grain in question, and it is conceivable 2

that the sum of very many weak contributions may be strong.

However, due to the randomness of the packing and the large
number of amorphous packings that may exist in the con-

figuration space, it is expected that the contributions from log[ Y]
increasingly larger loops of grains will be increasingly deco-

herent and largely cancel one another. Hence, there is good gl |

reason to assume that only the intragrain contribution to the i
correlations is significant in agreement with the FSA. '

If correct, the FSA is an important statement of the phys- o ®
ics because it fundamentally characterizes the DOS and pro- E
vides deep insight into the organization of the physics. In 401
contrast to thermal systems, with granular packings it would
be completely unsatisfactory to use a mean-field approxima- 20 ;

tion because this would throw away the structure resulting
from the strong two-point correlationgemembering that
these have been observed empiricalijowever, by includ- 0.6 -0.5 0.4

ing only this next higher level in the approximation—that is, logio[ Y]

only th? two-po_int Cor_relation:ﬁand assuming that highe_r FIG. 11. Distribution of values ol (s,t, §;) for fixed values
Correlat!ons exist StT'Ct.'y as a sequence O_f WO-POINL_y 4ng several fixed values of (Top) From left to right,t=10
correlationy—the maximization of a state-counting entropy (yaspeq ling, 9 (solid line), 8 (dashed ling, 7 (solid line), 6 (dashed
and the solution of the resulting transport equation producine) 5 (solid line), 4 (dashed ling 3 (solid line), and 2(dashed
esexcellent results as shown in the previous Sec. Ill. Th@ne) (Bottom) From left to right,t=1/10(dashed ling 1/9 (solid
two-point correlations therefore appear to be the essence @fe), 1/8 (dashed ling 1/7 (solid line), 1/6 (dashed ling 1/5
the physics. Further work is needed to carefully test thigsolid line), 1/4 (dashed ling 1/3 (solid line), 1/2 (dashed ling
hypothesis. and 1(solid line).

2. Validity of the MSA

The MSA is important because, if correct, it characterize@in configurations will have a value f that isrelatively
the structure factor as being a functional BS,(w,,w,)  Notvery far fromY while being distinctly separate from the
rather thanPg4(F, ), and this offers the possibility to de- Y for other values ofs,t). These latter considerations imply
couple the fabric from the force distributions in a way thatthat the MSA does characterize the organization in the DOS
will help the development of a full theory of rheology. In the qualitatively, but more effort is needed to show whether it is
meantime, pending rigorous testing of the MSA, the follow- quantitatively sufficient.
ing three considerations are presented to help justify it. Third, two different sampling schemes were implemented
First, the results produced by the MSA appear to be imas presented in Eq&46) and(48). The results were identical
excellent agreement with the numerical simulation data. Ao within the statistical precision of the data, as shown in Fig.
focused effort is needed to further test the quantitative agreet3. This shows that the resulting distributions are insensitive
ment in specific cases of stress and fabiric. to the existence or nonexistence of correlations between the
Second, the values &f have been calculated according to Cartesian loads and the contact angles, and this is the essence
Eq. (8) for the data obtained in the MSTE. The conditional of the MSA.
PDF Py(Y|s,t) was calculated for various fixed values ©f
andt and these are presented in Figs. 11 and 12+ and B. Form of the density of states

s=0.6, respectively. For some values ®fandt, the ratio The features of a DOS may be described by two compo-
Y™ /Y is as high as 3or greatey andY™"/Y is as small  nents: the shape of the accessible regions of the phase space
as 1/3(or lowen. This means that same grain configurationsand the measure that is used within that space. It is possible
{s,ti, 6;} will occur 3 times too often or only 1/3 often that the phase space is not equally accessed by the dynamics
enough in the MSA ensemble compared to the exact Edef a real packing as it locates and settles into one of the static
wards ensemble. This effect is most pronounced when states. Perhaps this is more true for the hypersiditic-

high ands is low. However, high values dfare rare to begin tional) case or for other cases less idealized than the one
with. Furthermore, the distribution for each pair of valuesconsidered here. The form of the PDF's would then be a
(s,t) is localized with a clear peak and so the majority of reflection of the shape of the measure rather than the shape
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The rise inP(F) to a peak is not due to a degeneracy of
F states in the same way that thermal systems have a distri-
bution shaped by the degeneracy of energy states or momen-
tum magnitudes. In other words, if a granular contact force
F=[F2+ F§+ F2Z] had three Cartesian components that were
statistically independent, then there would be a volume of
phase spac@(F) corresponding to each value Bfsuch that
Q) —0 asF—0. If that were the case, then the riseRp(F)
would necessarily begin at the origin. However, since that is
contrary to empirical observations, this sort of Cartesian
0 component degeneracy must not be a dominant feature in the
logio[ Y] DOS despite the fact thé&t is a vector magnitude.

An explanation for this begins with the idea that the fun-
damental unit in a granular packing is not a contact force, but
a grain, and so the physics of allowable grain states limits the
space(i.e., there must be a grain facjoFor the particular
case considered in this paper, there must be six axes in the
phase space of single grain states. The 2D stress tensor has
two independent principle stress values, and so at least two
of the six axes represent the force state. These may, bead
wy (or s andt). The other four axes must convey the geomet-
ric information, so they may be contact angles. If the space

) ‘ were given more axes than this, then the density of single
10;'[6“ 05 04 grain states would be constrained onto(l/pensurface
10 within that space, but we want the states to fill the volume so

FIG. 12. Distribution of values ol (s,t, ) for fixed values  that we may examine the behavior of the volume in the limit
=0.6 and several fixed values tf(Top) From left to right,t=8  that one contact forcé; — 0.

(dashed ling 7 (solid line), 6 (dashed ling 5 (solid line), 4 (dashed A fixed value of F; defines a five-dimensional region
line), 3 (solid line), and 2(dashed ling (Bottom) From left to right,  within the single grain space. Its 5D volume is
t=1/10(dashed ling 1/9(solid line), 1/8 (dashed ling 1/7 (solid -

line), 1/6 (dashed ling 1/5 (solid line), 1/4 (dashed ling 1/3 _ 20V

(solid line), 1/2 (dashed ling and 1(solid line). QFy) = f f . dWaY (F Wi W), (60

of the space. Nevertheless, the use of Edwards’ flat measuméhere

produced at least theredominantfeatures ofP:(F), and so . ) )

those features are attributable to the shape of the space. Th&' (F1, Wy, W) :J J J f d"60 O(steric exclusion
surprising repeatability oPc(F) seen experimentally and in

simulations under many conditions and in many nonidealized X [F1 = Fi(wy,wy, 6)]10(F2)O(F3)O(Fy)
cases is therefore explained by this fact. (62)

is the volume of a 3D hypersurface. The integrand of this is
3 everywhere non-negative and for any load state
(w,>0,w,>0) there exist some angleg®,} such that the
integrand is positive. This is because just three contagts
F5, andF, can support arbitrarily high loads by themselves

E regardless of the value &f;. Therefore,
E Q' (F1,wy,wy) >0 Ow, >0, w,>0. (62)
£ & This fact is demonstrated in 2D frictionless numerical simu-
E lations where it is seen that a large fraction of the grains have
i E ™ coordinationZ=3 and yet support compressive loads in both
ATt A axesw, andwy. Because of this, it turns out that in E&O)

the integrals inw diverge and(} is infinite for all values of

FIG. 13. Comparison of the curves that were fitted to the em-F Th lusion is that stabl . N t
pirical P¢(f) (large ploy and P,(f,) (inse} that resulted from the 1 fi edcpnc usion .Ish. at stabie %rarl]ns VIE]/ 1—1 are noh. .
mean structure transport method using two different sampling methconfined into a vanishing region of the phase space. This is

ods. In each plot the solid line uses sampling as @@) with N contrast to thermal systems where, for exampte,

quartered fabric, whereas the dashed line used sampling as in Eg.\[Px+py+pz] can be zero if and only if all its statistically
(48) but with nonquartered fabric. The results are statistically indis-independent components become zero so @) —0 as
tinguishable, lending credence to the mean-structure approximatiomp— 0.
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There are two key distinctives of the granular phasebe stable with zero force on one of its contacts than simply
space. First, while contact forces are indeed vectors, the stey having zero force on all of its other contacts. Without
bility requirement for the individual grains is so constraining addressing the statistical independence of the inputs, the
that the components of the vectors cannot be statisticallynodel could therefore be improvest the loss of solvability,
independent. Therefore, the DOS cannot be uniform in gerhaps by extending the ranges @ﬁ\f) to include some
space defined by the Cartesian axes. The degeneracy of V&Sortion of (\2) <0. This will account for the range of anti-
tor magnitudes does not automatically forie(0) to zero.  coelation between neighboring contacts. Extending the

Second, even the magnitudes of the contact forces Sha””ﬁ)ace this way will ensure th&(F) is nonvanishing foiF

the same grain cannot be statistically independent. Thereforeg0 and will result inPx(0)>0. This was demonstrated in

the DOS cannot be uniform in a space defined by all th . .
force magnitude axes. The vanishing volume of the nonter?t—he numerical solution of the MSTE. When the value$\s)

sile quadrant near the origin does not automatically forcdVere extracted from th2e numerical data, it was found that
P(0) to zero, either. Instead forces sharing a grain are corthey had arange —~05A“<1. The lower limit reflects steric
related in some regions of phase space and anticorrelated §clusion, and the upper limit reflects maximal separation on
other regions, depending upon t&;} axes. It is the exis- opposite sides of a grain.

tence of anticorrelation that provides the grains no fewer
degrees of freedom & ;=0 than they have at any other
value of F4. This will be explained further, below.

This observation about the phase space is the answer why
Pr(0)>0. Edwards’ flat measure predicts it, indicating that  The use of the FSA makes it possible to solve the DOS
the vast majority of metastable packings contain a finite frachased upon Edwards’ flat measure in a frictionless granular
tion of grains with one or more contacts arbitrarily close topacking of smooth, round, rigid grains with localized isos-
zero force. In fact, we know this is correct because everyacy. This produces a transport equation that can be solved
time the stress state of a packing is perturbed there is a finitgt least numerically Solution of this transport equation in
probability that a measurable fraction of the grains will tip the MSA was shown to produce the correct features for the
and rearrange. If something in the physics had made theontact force distributions.
region near zero force to be a vanishing fraction of the ac- This success tends to validate Edwards’ hypothesis: the
cessible space, then a flat measure in the space would haw®S appears to be dominated by features inherent to the
made tipping and rearranging prohibitively improbable.  static phase space, depending solely upon the packing’s

Since the volume of phase space does not vanisk as present fabric and the stress tensor. That is, the DOS may not
—0, then what causes the slope Ba(F) in the region of  pe shaped too significantly during the physics of the dynamic
weak forces? The answer is that even tholighis nonvan-  regime before the packings achieve static equilibrium.
ishing asF;— 0, it does get somewhat smaller in that limit. ~ The need for further work is apparent. First, the two ap-
This is because contacts on opposite hemispheres of thgoximations have not been adequately validated. The quan-
grain—say, F; and Fz;—are highly correlated. When titative results should be compared with simulations of rigid,
0<F;<(F), thenF;<<0 over a larger region offs} than it  frictionless grains with carefully controlled stress states and
is whenF;>(F). This was proven analytically for a special carefully measured fabric. This has not yet been performed
case in Ref[39]. Note that Eq(61) assumes isotropy in the because most studies have either included gravity or not re-
integrand. Weighting the integrand anisotropically may pro-ported the stress state or fabric.
vide sufficient generality to produce either rising or falling Second, solution of the transport equation without the
slopes inPg(F) in the region of weak forces, and this may MSA is being developed. Those results compared against the
explain its evolution under slow shearif. present study will be an important test of the MSA.

The reason the simplest model of Edwards and Griggv Third, the analysis should be extended and numerical re-
predictsP=(0)=0 is because it treats all the input forces andsults presented for more general cases. The case with aniso-
angle cosinea? as statistically independent. This implies a tropic stresses and fabric should demonstrate the qualitative
phase spacéF;,\?} with many more degrees of freedom €volution of the PDF's under shearing. This work has begun,
than a static grain actually possesses. Then, the non-negati@gd the initial results are hopeful. , _
domains of all the angle cosines ensure that e¥eiig posi- Fourth, the forms of thg funct!ons that fit the numerlqal
tively correlated withF, whereF:)\EF1+---+)\(22_1)F(Z_1). data for_Pst(s!t_) are tantalizingly simple. If Fhe cause of this
The only way thaf can be zero is for allZ-1) quantities can be identified then a completely analytical solution to the

()\izFi) to be simultaneously zero, which is vanishingly im- MSTE may be possible.

probable due to their statistical independence. This is in con-

trast to real grains where the neighboring contacts having

less thanr/2 radians of angular separation should be anti- ACKNOWLEDGMENTS

correlated. That is, one contact can lift the load off of its

neighboring contact so that if one contact bears more load | am grateful for helpful discussions with Aniket Bhatta-
then the neighbor must bear less. This anticorrelation allowsharya of the University of Central Florida Physics Depart-
the grain to be stable witA=0 while the other contacts have ment and with Robert Youngquist of NASAs John F.
nonzero forces on them. That is, the grain finds more ways tennedy Space Center.

V. SUMMARY AND CONCLUSIONS
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