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A method has been found to analyze Edwards’ granular contact force probability functional for a special
case. As a result, the granular contact force probability density functions are obtained from first principles for
this case. The results are in excellent agreement with the experimental and simulation data. The derivation
assumes Edwards’ flat measure—a density of states(DOS) that is uniform within the metastable regions of
phase space. The enabling assumption, supported by physical arguments and empirical evidence, is that cor-
relating information is not significantly recursive through loops in the packing. Maximizing a state-counting
entropy results in a transport equation that can be solved numerically. For the present this has been done using
the “mean-structure approximation,” projecting the DOS across all angular coordinates to more clearly identify

its predominant nonuniformities. These features are(1) the grain factorC̄ related to grain stability and strong

correlation between the contact forces on the same grain and(2) the structure factorȲ related to Newton’s third
law and strong correlation between neighboring grains.
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I. INTRODUCTION

A. Deriving the contact force distribution

There have been several attempts to derive the granular
contact force probability density function(PDF) for static
granular packings,PFsFd, by using analogies from thermal
statistical mechanics[1–5]. The interest arises in part be-
cause the empiricalPFsFd [6–17] has an exponential tail,
reminiscent of the energy distributions of thermal systems.
However, the overall form ofPFsFd is not found in thermal
systems, generally having a peak or plateau near the average
force and a nonzero value at zero force as illustrated in Fig.
1.

In contrast to this form, the prototypical distributions
found in thermal systems are either monotonically decreas-
ing (e.g., the Gibbs energy distribution) or begin from zero
probability density at the origin before rising to a peak(e.g.,
the Maxwell-Boltzmann distribution). In the nonmonotonic
cases the rising slope is due to the degeneracy of energy
states. The degeneracies reflect the dimensionality of the sys-
tem and dominate the form of the distribution at weak ener-
gies beginning from the origin. Since the forces in a granular
medium are vector magnitudes composed from several Car-
tesian components—implying degeneracy in the force
magnitudes—this raises the question whyPFsFd does not
likewise begin from the originPFs0d=0 before rising to its
peak? Indeed, a recent model[3,18] predicts that it should.
The model represents a first-principles approximation for key
elements of the physics and results in a Boltzmann-type
equation that is solvable. This produces aPFsFd that begins
from PFs0d=0, rises to a peak, and then decays exponen-
tially. Because of these considerations, the question may be
asked whether the empirical observations thatPFs0d.0 is
primarily the result of numerical or experimental uncertain-

ties: the distribution is in question precisely where the forces
are weakest and therefore most difficult to model or measure.
Perhaps the theory provides a clearer view into the funda-
mental organization of the density of states(DOS) in this
region than the empirical methods are presently able to pro-
vide.

It seems to the author that this is not the case for two
reasons. First, it has been shown that the form in the region
of weak forces evolves in a predictable way as a function of
stress and/or fabric anisotropy, which may be induced
through shearing[6]. The anisotropy dependence probably
explains the variations inPFsFd seen among the different
empirical studies, in that some jammed packings have dis-
played peaks while others have displayed plateaus or mono-
tonic forms. For a packing of grains originally in an isotropic
state,PFsFd displays a form similar to Fig. 1. As the packing
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FIG. 1. Linear plot of the PDFPfsfd of the normalized vector
magnitudes of the granular contact forces resulting from Monte
Carlo solution of the mean-structure transport equation. It has a
nonzero probability density for zero force, a peak just belowf =1,
and an exponential tail with decay constantb=1.6. The smooth
curve is a fit to Eq.(49). The log-log inset shows the behavior
below f =1. The dashed line is a power law of exponenta=0.3.
These features are consistent with experimental and simulation
data.
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is quasistatically sheared the distribution smoothly evolves to
having a plateau in the region of weak forces and then on to
becoming a monotonically decreasing function with only an
abrupt change of slope where the peak had previously been.
After the packing achieves peak shear strength, continued
shearing reduces the stress anisotropy and causes the distri-
bution to retrace its evolution most of the way, ending with a
small peak again. This behavior affects the distribution well
above the region of numerical uncertainty and cannot be dis-
missed as the result of dynamical or transient forces since the
shearing is quasistatic. It is difficult to see how this smooth
variation of forms—including plateaus and monotonic
forms—could be explained if the finitePFs0d.0 were not
real.

Second, the unique features of the PDF have been ob-
tained using a wide range of empirical techniques, and it
does not seem reasonable that all of them are incorrect in the
region of weak forces. These techniques include experiments
with frictional grains[7,8], numerical simulations with fric-
tional grains [6,9,11–13] or purely frictionless grains
[14–16], and adaptive network models[19]. The simulation
techniques have included contact dynamics(CD), discrete
element modeling(DEM), and molecular dynamics(MD)
quenched beneath the glass transition[10], all of which are
well-established techniques. The contact laws in these simu-
lations have included Hertzian, Hookean, and Lennard-Jones
potentials. Simulations have been done with and without
gravity and under a wide variety of conditions. The transi-
tions between the boundary and bulk have been thoroughly
examined[15]. The numerical techniques have demonstrated
the ability to distinguish between distributions that begin at
the origin and those that do not[15]. Although experiments
with frictionless emulsions[18] and some numerical simula-
tions [17] have been fitted to forms that begin withPFs0d
=0, arguably those data would be fit as well or better by
forms with nonzeroPFs0d.

The universality of these observations shows that the
PDF’s unique features are not associated with a specific type
of model or the(non)existence of friction, but are fundamen-
tal characteristics of static granular packings. Because of
this, the present paper will proceed with the assumption that
these observations are correct but have yet to be explained.
Perhaps the explanation lies in a unique generalization of
statistical mechanics. Just as the DOS for ideal Bose and
Fermi gases are organized differently than the classical dilute
gas and therefore produce their own unique energy distribu-
tions, so the DOS of granular packings may be organized in
some unique way to produce this distinctive PDF.

Such a generalization has been taking shape[20–22], be-
ginning with Edwards’ hypothesis[23] that all metastable
packings are equally probable in the statistical ensemble. An-
other line of progress is based on the concept of directed
force chain networks[24], while others aim to understand
the distribution of forces beneath a localized perturbation or
more generally the stress response function[25] and the phe-
nomena related to jamming and unjamming[26,27]. This
paper focuses more narrowly upon those models or hypoth-
eses which predict a PDF by making assumptions about the
DOS in the ensemble, including those models which take a
random walk in a phase space(e.g., theq model) or a PDF

space(i.e., the Boltzmann transport equation variety) and
those which directly assume the form of an entropy or other
thermodynamic functional.

The q model [28,29] may be considered a random walk
because the set of forces in a single layer of the lattice de-
scribe a locus in phase space while the random redistribution
of those forces from one layer to the next(controlled by the
stochasticq variables) represents a random walk through that
space. Eventually the walk wanders into regions of the space
having the most probable distribution of coordinates.
Bouchaud has shown that the sufficient requirement to obtain
the exponential tail in theq model is simply that some grains
transmit all their load from one hemisphere into just one
contact on the other hemisphere[22]. This introduced a new
way to think about granular media: the statistical relaxation
of the force distribution does not occur dynamically through
the time dimension as it does in thermal systems; rather it is
a necessary feature of theinternal, layer-by-layer static equi-
librium relationships, where the spatial dimensions play a
role analogous to the time dimension for the corresponding
set of Cartesian components of force[29]. Several generali-
zations of theq model and other lattice-based models have
been developed[30]. Some of these are similarly random
walks in a nondynamic phase space, but others include ex-
plicitly dynamic features to recursively achieve organization
in the percolating force network.

In this context it is probably helpful to mention again[31]
that the distribution predicted by theq model [29] was not
PFsFd, but ratherPwswd where w is the total vertical load
supported by the grain. Distributions ofw andF have been
occasionally confused with one another, especially sincew
andF become identical in the special case at the flat sides of
a container. This has contributed to the confusion over the
form of PFsFd. The q model can also produce distributions
PXsFxd of the vertical Cartesian components of the contact
forcesFx, but it cannot directly predict the vector magnitudes
F of those same contact forces. ThePXsFxd predicted by the
q model is always monotonically decreasing, in agreement
with numerical simulation data[15].

Another theoretical model that makes direct statements
about the contact force DOS is the Boltzmann-type equation
presented by Edwards and Grinev[3,18] mentioned above.
In the discussion section, this paper shall attempt to reconcile
the model with the empirical data.

Other models include several entropy maximization or
functional minimization concepts. These methods produce
elements of the empirically observed PDF’s, but not all of
their features. The concept proposed by Bagi[1,2] deals, like
the q model, with Cartesian components. It produces the
same canonical distribution as the uniformq model. The
concept proposed by Kruyt and Rothenburg[4] deals with
contact force magnitudes and predictsPFs0d=0, a peak, and
an exponential tail. The concept proposed by Ngan[5] pro-
ducesPFs0d.0, a peak, and a nearly Gaussian, compressed-
exponential tail. Unlike Edwards and Grinev’s model, these
last three are not derived from first-principles but are hypoth-
eses drawn by analogy with other entropic systems. Despite
any shortcomings, all these models provide important in-
sights into the nature of the PDF problem.
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B. Organization of the paper

This paper is organized as follows. Section II will present
a first-principles analysis of the DOS in a modified version
of the Edwards ensemble[23]. The dynamical behaviors of
granular media will be completely avoided so that Edwards’
hypothesis alone shapes the DOS. It will be shown that the
DOS is highly self-organized and very sparse. Its form de-
pends upon the form ofPFsFd andvice versaso that recur-
sion is necessary to solve for either. Maximizing a state
counting entropy in this phase space will produce the recur-
sion equation which is analogous to the Boltzmann transport
equation. To elucidate the organization of the DOS, it will be
projected in the mean-structure approximation across all an-
gular coordinates before solving numerically. Section III pre-
sents the numerical solution of the mean-structure transport
equation. The results demonstrate the success of Edwards’
hypothesis in that it predicts a form for the PDF’s in quali-
tative and quantitative agreement with the experimental and
simulation data, havingPFs0d.0, a peak and an exponential
tail with a decay constant matching empirical observations.
Section IV discusses the validity of the approach and insights
into the physics that produce the features ofPFsFd. Section
V summarizes the paper and points to several unanswered
problems and generalizations that are needed.

II. MODIFIED EDWARDS ENSEMBLE ANALYSIS

A. Description of the particular ensemble

Following Edwards and co-workers, this analysis focuses
upon two-dimensional(2D), amorphous packings of cohe-
sionless, rigid grains having the fixed coordination number
that makes the packing isostatic[21]. The problem shall be
further idealized, however, by using only smooth, round
grains. Also, this paper focuses on the frictionless case
wherein the 2D isostatic coordination number isZ=4. A
method has been found to solve Edwards’ probability func-
tional for this special case. Although this ensemble is highly
idealized, it is a good starting point because 2D packings of
cohesionless, round grains that are perfectly rigid[11,12]
and/or frictionless[10,13,15,16,18,27] are known to have
force distributions with the same qualitative features as the
more generalized packings and hence must be subject to the
same organizational constraints in the statistics. Therefore
they are sufficient to elucidate the origin of those constraints
in the physics.

The use of exactly four contacts per grain, however, is
more idealized than has been achieved in typical numerical
simulations. Nevertheless, it is acceptable because that is the
average coordination number for 2D frictionless packings of
round, rigid grains which are isostatic[22,32], and it will be
shown herein that the same qualitative and quantitative fea-
tures ofPFsFd arise as they do in the more realistic simula-
tions.

Two defining issues for the ensemble are(1) how to
specify the fabric and(2) how to apply stress to it. Since this
paper is concerned primarily with the derivation ofPFsFd
and since its form is known to evolve with stress and fabric
anisotropy under shearing, the ensemble will sufficiently

general to accommodate anisotropy in each. On the other
hand, this paper does not address the more ambitious prob-
lem of stress propagation. Therefore the analysis shall not
accommodate large-scale stress and fabric inhomogeneities
that persist in the ensemble average. An example of an inho-
mogeneous case is the conical sandpile formed by central
pouring, which has directional fabric and stress propagation
away from the center of the pile[33]. In this paper, only
actions such as shaking, shearing, and compressing are as-
sumed to have occurred in the construction history because
these produce homogeneous stress and fabric states with
only statistical fluctuations, vanishing in the ensemble aver-
age.

Specifically, stress will be specified as the tensor which is
a volume average over the entire packing. The source of
stress will be mechanical at the boundaries to allow for the
full range of possible states, something which gravity alone
cannot do. Gravity will be eliminated both because it is not
necessary and because it breaks a symmetry of the ensemble
and may thus tend to obscure the organizational features of
the physics.

This leaves the question how to specify the fabric. Ed-
wards and co-workers have developed a conjugate field
theory with the goal of explaining the propagation of stresses
in granular materials correlated to the local contact geometry
[21]. In that theory it has been shown that two fabric tensors
are required to produce the complete set of stress propoga-
tion equations. They have elsewhere developed a thermody-
namic theory of compaction, in which the relevant specifier
is simply the scalar volume of the packing[23]. For the sake
of simplicity, the choice was made there to avoid the full
anisotropic treatment. For the present purposes, something is
needed which is less than the full tensorial treatment but
more than scalar compaction. We will therefore use the joint
probability density function(JPDF) P4usu1, . . . ,u4d studied in
Ref. [34]. This function correlates the contact angles that
share the same grain. It can be collapsed toPusud,

Pusud =
1

4o
b=1

4 E E E E
0

2p

d4uP4usu1, . . . ,u4ddsu − ubd.

s1d

The use of the uncollapsed distribution is deemed necessary
because the physics of fragile media are grain centered and
the intra grain correlations turn out to be the heart of the
statistical physics, as shall be shown here. This JPDF is not
sufficient to relate the packing state to the specified stress
tensor, however, because it tells nothing of the number and
size of voids created by the arrangement of neighboring
grain configurations. For the present, the voids may be quan-
tified simply by assuming a number of grains per unit dis-
tance in a cross section of the 2D packing in each orthogonal
direction. These quantities along with the JPDF will be
specified in the ensemble rather than predicted. Evolution of
the internal state of the packing is beyond the present study.

Finally, for convenience the idea of “quartered fabric” is
introduced at several points. It is defined such that
P4usu1, . . . ,u4d is zero everywhere except where thej th con-
tact is on thej th quadrant of every grain in the packing. For
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the specific case of “quartered isotropy,” collapsing the quar-
tered fabric by Eq.(1) producesPusud=1/2p. This mimics
true isotropy but the anisotropic quartering is apparent in the
JPDF. As in the case of nonquartered fabric,P4u enforces
steric exclusion. To achieve quartered isotropy with steric
exclusion in a Monte Carlo process it is necessary to weight
the distribution of attempted angles to emphasize the regions
close to the edges of each quadrant. Otherwise, steric exclu-
sion would cause notches to appear inPusud near the bound-
ary of each quadrant. The use of quartered fabric in this
analysis is only to provide insight into the expressions. It is
always possible to write and numerically solve them for the
more general case, and it was found that numerical solutions
were indistinguishable with or without quartered fabric.

B. Phase space

The locus in phase space of a classical dilute monatomic
gas completely defines its state. We wish to define a phase
space for granular packings which is similarly complete. A
2D frictionless granular packing ofN round, rigid grains is
isostatic and therefore contains 2N contacts. The phase space
therefore requires at least 4N phase space axes, half of which
define the force on each contact and half of which define the
contact angleshFk,ukuk=1, . . . ,2Nj, which is labeledS1 and
has DOSrs1d. It is possible to define the ordering of the axes
so that it is understood which four contacts correspond to the
same grain and therefore which grains contact one another. It
will not prove necessary to do so explicitly, although this
ordering is implicitly assumed to exist.

Newton’s third law(N3L) is automatically satisfied inS1,
since each contact is represented by only one force and one
angle axis. However, enforcing Newton’s second law(N2L)
will prove simpler if redundant axes are created to account
for each contact force twice, one time with each grain that
shares the contacthFab ,uab ua=1, . . . ,N;b=1, . . . ,4j, where
a subscripts the grain andb subscripts the contact on the
grain. This space is labeledS2. In this new space it will be
necessary to enforce N3L. Again, it is possible to define the
ordering of the axes so that it is understood which contacts
are redundant to one another and therefore which grains are
contacting neighbors. It will not be necessary to do so ex-
plicitly, although this ordering is implicitly assumed to exist.

In the thermodynamic limitN→` this ensemble has Ed-
wards’ flat measure, every metastable state being equally
probable, The DOS inS2 is

rs2dhFab,uabj = dsfabric P4uddSo
a

wxa − WxD
3dSo

a

wya − WyDH p
contacts

dsFW gd + FW «zdJ
3p

a=1

N

dSo
b=1

4

FW abDp
b=1

4

QsFabd, s2d

whereQ is the Heaviside(unit step) function.
The six constraints which define the accessible regions of

phase space are described below.
(i) The JPDF for the fabric is specified by the firstd

function. Actually, there should be a statement relating the

continuumP4usu1,u2,u3,u4d with the discretized distribution
of angles at finiteN, mklmnsu1k, . . . ,u4nd, but the meaning is
nonetheless clear.

(ii ) [and(iii )] The Cartesian loadswx andwy on each grain
will often be called the “supported loads” or simply the
“loads.” At each locus in phase space the relationship exists
between these loads and the Cauchy stress tensor.(See, for
example, Ref.[35].) For simplicity the sum over these Car-
tesian loads is specified. Hence,

o
a=1

N

wxa = Wx, o
a=1

N

wya = Wy, s3d

where the loads are defined by

wxa = swxa
left + wxa

rightd/2, wya = swya
top + wya

bottomd/2, s4d

and, using nonquartered fabric,

wxa
left = − o

b=1

4

LabFab cosuab,

wxa
right = + o

b=1

4

RabFab cosuab,

wya
top = + o

b=1

4

TabFab sinuab,

wya
bott = − o

b=1

4

BabFab sinuab. s5d

The operatorLab multiplies the expression by 1 ifp /2
øuab,3p /2 meaning thebth contact is on the left half of
the grain; else it multiplies it by 0. LikewiseRab, Tab and
Bab test for contacts on the right, top, and bottom sides of the
grain, respectively. For stable grains,wxa=wxa

left=wxa
right, but

the hemispheric distinctions shall be useful in the analysis.
(iv) N3L is satisfied between every pair of contacting

grains:

FW gd = − FW ez, s6d

where grainsg ande are contacting neighbors through their
dth andzth contacts, respectively.

(v) N2L for static equilibrium must be satisfied at each
grain individually:

o
b

FW ab = 0 ∀ a. s7d

(vi) Q enforces no tensile contacts anywhere in the pack-
ing, which restricts the DOS to the first “quadrant” of the
force axes.

In addition to these six constraints, two missing con-
straints should be noted

(i) The above ensemble does not enforce the shear stress
but relies on the fact that their ensemble average is zero and
in the thermodynamic limit the fraction of packings in which
the shear deviates from zero by more than some arbitrarily
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small amount will vanish. The Cartesian axes of the packings
are taken to be aligned with the principle stress axes so that
the off-diagonal elements of the stress tensor should be zero.

(ii ) A cluster of real grains must just touch one another,
forming closed loops, but in the above ensemble the geomet-
ric constraints for grains outside the first coordination shell
have been intentionally omitted. Thisfirst shell approxima-
tion (FSA) asserts that only negligible correlative informa-
tion travels all the way around closed loops of grains in the
ensemble average. In other words, the DOS is adequately
characterized for the present purposes by the two-point(in-
tragrain) force correlations and the resulting correlation of
loads in neighboring grains. Therefore, the geometric closure
of force loops can be ignored when deriving the statistics of
single-grain states. There are important arguments supporting
the FSA and they will be presented in the discussion section.

C. Phase space operations to quantify the nonuniformity

Although Edwards’ flat measure is uniform across the re-
gions of accessible phase space, the volume of those regions
is not uniformly distributed across the coordinates. The pro-
gram is to change coordinates in a way that eliminates delta
function constraints from the right-hand side of Eq.(2), trad-
ing the lack of uniformity in the constraints for a lack of
flatness in the measure. When only extensive, conserved
quantities remain in the list of constraints, then the method of
the most probable distribution may be used, relying on the
method of Lagrange multipliers to conserve those quantities.

1. Newton’s third law

In this context the term “grain configuration” refers not
only to a grain’s contact geometry but also to the set of
forces upon those contacts as defined by the locus in phase
space. The form ofS2 itself does not require neighboring
grains to satisfy N3L, and so the vast majority of loci include
neighboring grain configurations with physically unrealiz-
able forces. This mathematical abstraction enables the analy-
sis.

If we wished to neglect N3L, then we could proceed with
the remainder of the analysis, obtaining the hypothetical
DOS for regions of this space having stable, cohesionless
grains, write the state-counting entropy, and then maximize it
subject to the conservation of total loads and fabric. This
would produce the most probable distribution for all possible
permutations ofN stable grain configurations where the
grains are mechanicallyindependent. However, it turns out
that N3L is not negligible: by considering instead all the
possiblecombinations(rather than all possiblepermutations)
of N stable, independent grain configurations, we note that
some of these combinations can be mechanically connected
into a greater number permutations satisfying N3L than can
other combinations. Hence, those combinations are the more
entropic ones, the ones which represent the greater number
of metastable packings in the phase space. Therefore, to find
the most entropic combination of stable, independent grain
configurations, we will mapS2→S3, a space where the axes
are the same as inS2 except that they are not sequenced to
represent a particular permutation of the grains. Whereas a

locus inS2 represents a single state(a single packing permu-
tation of a set of grain configurations), a locus inS3 repre-
sents a set of mechanically disconnected grain configurations
that may or may not be permutable into some number of
stable states. We shall call the latter an “assembly space” to
distinguish it from a phase space that identifies every grain’s
location in the packing. The fraction of permutations that
satisfy N3L will be quantified in this mapping process.

To verify that a particular permutation of a given combi-
nation of stable grainshFab ,uabj satisfies N3L, it is neces-
sary to check every contact in the permutation. All permuta-
tions of this combination have the same JPDF of forces and
contact angles,PFusF ,ud=PFusF , uuuhFab ,uabjd, whatever its
form may be. Randomly choosing one contact from the set of
these permutations, a contact forceFab at angleuab therefore
has the probabilityPFusFab ,uabddFdu that it will satisfy
N3L with its neighbor.(The two differentials reflect the fact
that N3L reduces the solution space by two dimensions per
contact, thereby taking out the extra dimensions introduced
in S1→S2.) The probability that an entire grain configuration
drawn from this set of permutations will satisfy N3L
with its four neighbors will be called
Y2sFa1, . . . ,Fa4,ua1, . . . ,ua4dd4Fd4u, written for compact-
ness asY2sFab ,uabdd4Fd4u. It may be written as a functional
of PFu:

Y2sFab,uabd = p
b

PFusFab,uabd. s8d

This expression treats the contacts on the neighboring grains
as if they are uncorrelated because this is a packing that was
drawn randomly from the set of all possible permutations,
including the ones which are physically unrealizable. There-
fore there are noa priori correlations between neighboring
grains; such correlations arisea posteriori by selecting the
subset of packings that satisfy N3L.

Because of this statistical independence, the fraction of
packings that satisfy N3L for all of its grains is likewise
simply the product over the probabilities that each of the
individual grains will satisfy N3L with its own local neigh-
bors. (The FSA appears implicitly in this statement.) How-
ever, the product ofY2sFab ,uabd over all a accounts for
every contact in the packing twice, once with each grain
sharing the contact. For the cases where N3L is in fact sat-
isfied, the double accounting of contacts will appear as pairs
of PFu factors having identical arguments. Hence, the prob-
ability that the entire packing will satisfy N3L is the square
root of that product—explaining the use of the square expo-
nent in Eq.(8). The fraction of permutations that satisfy N3L
is

FN3LhFab,uabj = p
a=1

N

YsFab,uabdd2NFd2Nu. s9d

This calculation does not handle the boundaries of the pack-
ing (unless they are periodic), but we are concerned with the
statistics in the bulk in the thermodynamic limit where the
boundaries are pushed out toward infinity.

Now the DOS may be mapped from the phase space to
the assembly space,S2→S3:
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r̃s3dhFab,uabj = dsfabric P4uddSo
a

wxa − WxD
3dSo

a

wya − WyDp
a=1

N

YsFab,uabdd2NFd2Nu

3dSo
b=1

4

FW abDp
b=1

4

QsFabd. s10d

The tilde onr̃ indicates that this density is in an assembly
space.

2. Newton’s second law

To quantify the effects of N2L, note that Eq.(5) can be
used as a many-to-one mapping fromS3→S4, which will
have coordinateshwja ,uab uj=x,y;a=1, . . . ,N;b=1, . . . ,4j
and is another assembly space, representing combinations of
mechanically independent grain configurations. Thus, the
mapping reduces the dimensionality of the space by two per
grain, just as N2L reduces the dimensionality of the solution
space by two per grain. However, the reverse mapping is one
to one because the localized isostacy of the grains determines
the four contact forces when the supported loads and four
contact angles are specified. Thus, of all the points inS3 that
map to the same point inS4, at most only one represents a
stable packing and is occupied, the one which is specified by
solving Eq. (5) for Fab with wx=wx

left=wx
right and wy=wy

top

=wx
bott.. This system of equations is nonsingular except for

some precise alignments of contacts on a grain which we can
ignore. The Jacobian of transformation forS3→S4 is simple
to write and is a functional of the fabric. Instead,Y is rede-
fined to produce the Jacobian withd functions:

Y2sFab,uabd =E E E E
o

`

d4Fp
b

PFusFab,uabd

3dswxa − Fa1 cosua1 − Fa4 cosua4d

3dswxa + Fa2 cosua2 + Fa3 cosua3d

3dswya − Fa1 sinua1 − Fa2 sinua2d

3dswya + Fa3 sinua3 + Fa4 sinua4d.

s11d

(Note that for simplicity this has been written with quartered
fabric.) With this, the DOS inS4 may be written

r̄s4dhwja,uabj = dsfabric P4uddSo
a

wxa − WxD
3dSo

a

wya − WyDp
a=1

N

Yswxa,wya,uabdd2Nu

3p
b=1

4

QfFabswxa,wya,uabdg. s12d

3. Cohesionless grains

The product over Helmholtz functions may simply be
omitted if it is remembered that thePFusF ,ud factors con-

tained withinY must be zero for negative argumentsF. On
the other hand, it will prove convenient to define
CsFab ,uabd=Pb=1

4 QsFabd whereFab=Fabswxa ,wya ,uabd.

D. State-counting entropy and its maximum

Randomly drawing packings from the regions ofS4 that
have a specifiedP2w4uswx,wy,u1, . . . ,u4d [and hence a speci-
fied fabric and a specifiedPFusF ,ud], the fraction of packings
in which all grains will satisfy N2L without cohesionand
satisfy N3L with its neighbors is

Fhwja,uabjfPFug = pa
YsFab,uabdfPFugCsFab,uabdd2Nu

= pi
¯ pn

fYswxi,wyj,u1k, . . . ,u4ndfPFug

3 Cswxi,wyj,u1k, . . . ,u4ndgni jklmnd2Nu,

s13d

whereni jklmnswxi ,wyj ,u1k, . . . ,u4nd is the discretized version
of the distributionP2w4uswx,wy,u1, . . . ,u4d, normalized such
that oi¯onni jklmn=N. It was obtained by discretizing the
swx,wy,u1, . . . ,u4d space into bins of volume
sDwx Dwy Du1¯Du4d=sDwd2sDud4. Note that in Eq.(13),
the product in the first line is over the grains whereas the
products in the second line are over the discretized intervals
of each of the variableswx,wy,u1, . . . ,u4. For compactness
we will write

Fhwja,uabjfPFug = p
i

¯ p
n

fYi,. . .,nCi,. . .,ngni,. . .,nd2Nu.

s14d

To find the most probableP2w4uswx,wy,u1, . . . ,u4d that
results from the nonuniform DOS of Eq.(12), we likewise
discretize S4 into cells of volume sdwx dwy du1¯du4dN

wheresdwd2sdud4=sDwd2sDud4/S, whereS is a large integer
and S@ni,. . .,n∀ si , . . . ,nd. The number of cells inS4 which
map to a particular sethni,. . .,nj can be estimated by explicit
counting,

vhni,. . .,nj = p
i

¯ p
n
F sS− 1 +ni,. . .,nd!

sS− 1d ! sni,. . .,nd!G
3 So

i

¯ o
n

ni,. . .,nD! s15d

and in the limit asS→` the estimate becomes exact. How-
ever, becauseS4 is an assembly space, the axes can be rela-
beledN! different ways to represent the same combination of
grains. Removing this physically meaningless repetition, we
omit the factorial of the sums in the second line of Eq.(15):
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ṽhni,. . .,nj = p
i

¯ p
n
F sS− 1 +ni,. . .,nd!

sS− 1d ! sni,. . .,nd!G , s16d

where the tilde onṽ indicates that this is the “correct
Boltzmann counting” for an assembly space, in which the
grains are indistinguishable.

The number of statesV in the ensemble mapping to the
distribution hni,. . .,nj is thereforeṽhni,. . .,nj times the DOS in
those cells ofS4:

Vhni,. . .,nj = p
i

¯ p
n
F sS− 1 +ni,. . .,nd!

sS− 1d ! sni,. . .,nd!G
3 N ! fYi,. . .,nCi,. . .,ngni,. . .,nd2Nu, s17d

where we have used the notation of Eq.(14) to express the
DOS. Taking the logarithm, it may be maximized with re-
spect to np,. . .,u. If we discretize the JPDF of fabric
P4usu1, . . . ,u4d→mklmnsuk, . . . ,und such that ok¯onmklmn

=N, then each value ofmklmn∀k, l ,m,n is a conserved quan-
tity according to the definition of the ensemble in which
fabric is specified. The conservation ofWx, Wy, andmklmn are
enforced via Lagrange multiplierslx, ly, andgklmn, respec-
tively:

]

]np,. . .,u
Fln Vhni,. . .,nj − lxSo

i

¯ o
n

ni,. . .,nwxiD
− lySo

i

¯ o
n

ni,. . .,nwyjD
− o

k

¯ o
n

gk,. . .,nSo
i

o
j

ni,. . .,nDG = 0. s18d

The calculus is performed using Stirling’s approximation
and an expansion of the logarithm in a Taylor series ofni,. . .,n
where necessary. Taking the limit forS→` while conserving
N and then taking the continuum limit obtains

P2w4uswx,wy,ubd = Yswx,wy,ubdCswx,wy,ubd

3 Gsubde−lxwx−lywy, s19d

where the fabric partition factorGsubd=Gsu1, . . . ,u4d derives
from exps−gp,. . .,ud in the continuum limit.

Note thatlx andly should not be confused with the decay
constants of the exponential tails in the empirical PDF’s.
Most (if not all) of the exponential behavior in Eq.(19) is
contained in the form ofY because it is a functional of
PFusF ,ud. It will be shown in a numerical solution of the
isotropic case using an approximation method(later in this
paper) that the value oflx=ly is approximately zero. This
should not be the case in general, however, because these
two parameters provide the only information about stress
anisotropy in the equation.

The fabric partition factorG, along withY andC, deter-
mines the partition of fabric between theswx,wyd “modes.”
Integrating Eq.(19) over wx andwy,

P4usubd = Gsubd E E
0

`

d2wYCe−lxwx−lywy = GsubdHsubd.

s20d

Assuming the standard result of statistical mechanics, one
form of PFu will be found in the overwhelming majority of
the occupied phase space, and so in the thermodynamic limit
we may treat fabric as if it is partitioned byG with a fixed
form in all of phase space. This factor is not a function ofwx
or wy. However, the partition is not an equipartition because
of the influence ofY andC. The former is variable over the
range of angle configurations within each mode, and the sec-
ond is a truncating factor which limits the range of angle
configurations differently for each mode.

E. Recursive “transport” equation

The JPDFP2w4u can be collapsed:

PFusF,ud =
1

4o
b=1

4 E E
0

`

d2wE E E E
0

2p

d4udsu − ubddfF − Fbswx,wy,u1, . . . ,u4dgP2w4uswx,wy,u1, . . . ,u4d. s21d

Inserting Eq.(19) into Eq. (21) results in a recursion ofPFu:

PFusF,ud =
1

4o
b=1

4 E E
0

`

d2we−lxwx−lywyE E E E
0

2p

d4udsu − ubddfF − Fbswx,wy,u1, . . . ,u4dg

3 Gsu1, . . . ,u4dp
g=1

4

QfFgswx,wy,u1, . . . ,u4dg E E E E
0

`

d4F8p
d=1

4

fPFusFd8,uddg1/2

3dfwx − wx
rightsF18,u1, . . . ,F48,u4dgdfwx − wx

lefts·dgdfwy − wy
tops·dgdfwy − wy

bott.s·dg. s22d
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This can be simplified by taking advantage of symmetries in
the ensemble. For example, in the case in which fabric is not
quartered so that every contactsb=1, . . . ,4d is statistically
similar, then the summation may be removed.

The dependency ofY upon the form of PFusF ,ud
=PFusF ,u u hwj,a ,uabjd reveals that the DOS in a granular
ensemble is self-organized(accomplished by the packing in
its dynamic state as it sought a stable locus in phase space)
and cannot be given a simplistica priori characterization in
a way that is analogous to thea priori uniform characteriza-
tion of a thermal DOS. The form ofPFusF ,ud derives from
the DOS nonuniformity andvice versa. In principle, this re-
cursion is the unique solution for this special case, assuming
that correlative information is nonrecursive in the ensemble
average and that Edwards’ flat measure over all metastable
states is correct.

F. Mean-structure approximation

The recursion equation can be solved using Monte Carlo
integration. Efforts are underway to obtain the numerical so-
lution, which shall be presented in a future publication. For
the present an approximation will be introduced, simplifying
the recursion equation while yet providing sufficient accu-
racy to demonstrate the principle organizational features of
the ensemble. The approximation has value in its own right
because it will isolate and identify those organizational fea-
tures.

The approximation is obtained by projecting the DOS in
S4→S5, where the latter is the subspacehwxa ,wyaj. This pro-
jection is performed by integrating the DOS across all the
angle axes. For a given pair of valuesswx1,wy1d, the evalu-
ation of Yswx1,wy1,uabdÞYswx1,wy1,ugdd for hubjaÞ hudjg

in general. That is, certain contact angle configurationshubj
will yield a greater probability that the grain will be consis-
tent with their neighbors than will other contact angle con-
figurations. Therefore, information is lost in the projection
into the S5 subspace. Nevertheless, this loss of information
may not be so great that it blurs the principle organization of
the DOS. Arguments can be advanced to show that, over the
distribution of all contact angle configurations where the
grain is stable,

Yswx1,wy1,uabd < Ȳswx1,wy1d s23d

for moststable grain configurations. WhereasC is a truncat-
ing factor in the DOS, defining the region where individual
grains are stable,Y is a scaling factor in the DOS, indicating
how often particular grain configurations will occur in the
ensemble based upon the probability that they can satisfy
N3L with their neighbors. Equation(23) claims that this scal-
ing is strongly dependent upon the values ofwx andwy, but
when varying the contact angles it does not vary too much
over the majority of that configuration space. This allows the
S4→S5 projection to be simplified.

The approximation shall be called the “mean-structure ap-
proximation,” (MSA), and it is illustrated in Fig. 2. It is

important to distinguish this from the mean-field approxima-
tion (MFA), which is useful for thermal systems but not ac-
ceptable for granular packings. The reason that the MSA may
be adequate where the MFA fails is because it preserves the
exact intragrain correlation of contact forces by N2L and also
the approximate intergrain correlations ofswxa ,wyad by N3L,
both of which are lost in the MFA. The validity of the MSA
shall be evaluated in the discussion section.

The most probableP2wswx,wyd to occur in theS5 sub-
space can be obtained directly by integrating Eq.(19) over
all angles:

P2wswx,wyd = e−lxwx−lywyE E E E
0

2p

d4uGsubd

3 Cswx,wy,ubdYswx,wy,ubd. s24d

We wish to simplify this in the MSA. With some manipula-
tion it can be shown that

Yswx,wy,ubd =E E E E
0

`

d4wfP4w4u
! swj

hem,ubdg1/2

3dswx − wx
rightddswy − wy

topddswx − wx
leftd

3dswy − wy
bottd, s25d

where

FIG. 2. Schematic diagram of eight-dimensional space to illus-
trate the mean-structure approximation. The MSA assumes that the
probability for a grain to satisfy Newton’s third law with its neigh-
bors does not vary over any of the configurations of the grain hav-
ing fixed Cartesian loads. In fact, the exact probability does not
vary too widely for the vast majority of those grain configurations.
Therefore, the MSA should produce a distribution of grain configu-
rations that is a good representation of the exact ensemble. The
individual circles represent the region where random grain configu-
rations, taken to be neighbors for the grain in question, would at-
tempt to apply a particular load on each hemisphere of that grain.
The intersection is the stable region where the MSA applies.
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P4w4u
! swj

hem,ubd = P4w4u
! swx

right, . . . ,wy
bott,ubd

=E E E E
0

`

d4Fp
b=1

4

PFusFb,ubd

3dswx
right − F1 cosu1 − F4 cosu4d

3dswx
left + F2 cosu2 + F3 cosu3d

3dswy
top − F1 sinu1 − F2 sinu2d

3dswy
bott + F3 sinu3 + F4 sinu4d. s26d

This can be interpreted as the JPDF ofattemptedloads and
contact angles that the set of all possible packing permuta-
tions (with the specifiedPFu) attemptsto place on any one
grain. The star indicates that this is only a conceptual distri-
bution, not found in stable packings. It can be viewed as a
mean-field calculation, where the incoming forces have been
drawn randomly from the entire set of grains in the packing
permutations. Its domain is therefore not restricted to the set
of forces that would make a grain stable. Because of this, the
pair swx

right,wy
topd should not be too strongly correlated to

swx
left ,wy

bottd after integrating out the angular dependence:

P4w
! swx

right,wy
top,wx

left,wy
bottd < P2w

! swx
right,wy

topdP2w
! swx

left,wy
bottd.

s27d

All the angular content ofY is in P4w4u
! swj

hem,ubd, so we
make the mean structure approximation

P4w4u
! swj

hem,ubd < P4w
! swj

hemd/16p4 s28d

for moststable grain configurations, so that, by Eq.(25),

Yswx,wy,u jd < fP4w
! swx,wx,wy,wydg1/2/4p2 s29d

for most swx,wy,u jd. Using Eqs.(23), (27), and(29) we de-
fine

Ȳswx,wyd = P2w
! swx,wyd/4p2. s30d

P2w
! swx,wyd may be viewed as a mean-field calculation of

attemptedloads(for packing permutations having the speci-
fied PFu), which the half-space of the ensemble attempts to
place on the corresponding hemisphere of a grain(for each
of the two Cartesian loads) and where the mean field in-
cludes the unstable regions of the phase space. However, it
must be emphasized that this is not a mean-field calculation
of loads actually placed on the grains, but rather it is the
approximate scale measuring how often particular modes
will satisfy N3L and therefore occur in the ensemble. The
validity of the approximation depends on the relative weak-
ness ofY’s dependence on the contact angles for most stable
grain configurations. Using the MSA in Eq.(24),

P2wswx,wyd = e−lxwx−lywyȲswx,wyd

3E E E E
0

2p

d4uGsubdCswx,wy,ubd.

s31d

Defining

C̄swx,wyd =E E E E
0

2p

d4uGsubd

3 p
g=1

4

QfFgswx,wy,u1, . . . ,u4dg, s32d

we may write,

P2wswx,wyd = e−lxwx−lywyȲswx,wydC̄swx,wyd. s33d

Finally, writing the DOS inS5,

r̃s5dhwxa,wyaj = N!p
a

Ȳswxa,wyadC̄swxa,wyad

3dso
a

wxa − Wxddso
a

wya − Wyd. s34d

We may identify C̄swx,wyd as the “grain factor” and

Ȳswx,wyd as the “structure factor.” These are the primary

features of nonuniformity in the DOS. WhereasC̄ derives
from the configuration space ofindividual grains(cohesion-

less N2L), Ȳ derives from the configuration space of grains
connecting together to form a packing structure(N3L).
These two factors were so named because their separability
(in the MSA) and their roles may be considered somewhat
analogous to the separability and roles of the atomic form
factor and structure factor of x-ray crystallography.

The meaning ofC̄ can be illustrated easily through a
change of variables. We notice that for rigid, cohesionless
grains there is no inherent force scale and hence stability
must be independent of the overall scale of the forces. Thus
it is convenient to change variables:

sa =
wxa − wya

wxa + wya

, ta = wxa + wya. s35d

The stability of theath grain is therefore a function ofsa and
the four contact angleshubja only. With the JacobianJ= t,
Eq. (24) can also be written

Pstss,td = Ȳstss,tdC̄sssde−slx+lydt/2−slx−lydst/2, s36d

where the notation

Ȳstss,td = tȲfs1 + sdt/2,s1 − sdt/2g = swx + wydȲswx,wyd
s37d

and

C̄sssd = C̄fs1 + sdt/2,s1 − sdt/2g = C̄swx,wyd. s38d

has been introduced. Note thatQ in Eq. (32) is insensitive to
the scale ofFk and cares only whether it is positive or nega-
tive, and hence thet does not appear as an argument of

C̄sssd.
In these coordinates Eq.(32) may be solved very effi-

ciently by Monte Carlo integration. This has been performed

for the case of quartered isotropy. In the MSA,Ȳ does not
affect the fabric partition, and hence it is easy to find the
fabric partition factor. The product of the weighting for the
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quartering bias with the weighting for the fabric partition
was obtained empirically by adjusting as required in a Fou-
rier decomposition to achieve approximate isotropyPusud
<1/2p. The numerical result for that case is fit well by a
Gaussian:

C̄sssd = Îc/pe−cs2, usu ø 1, s39d

with c=7.9. It is shown in Fig. 3 with the fit as the dashed
curve. This indicates that in the isotropic case the volume of
a grain’s stability space is a Gaussian function of the indi-
vidual grain’s load anisotropys.

In contrast to the simplicity of the above result, the form

of Ȳ depends uponPFu and hence can only be found by
solving the transport equation.

G. Mean-structure transport equation

Just as Eq.(19) can be solved recursively, giving us the
recursive “transport” equation, so can Eq.(33) be solved
recursively, giving us the “mean-structure transport equa-
tion” (MSTE).

To develop the MSTE, we convert the load distribution of
Eq. (33) into a contact force distribution. This cannot be
done simply by collapsingP2w since it does not contain suf-
ficient information. However, the variables may be changed
if we first obtain the joint conditional PDFCFusF ,u uwx,wyd,
so that

PFusF,ud =E E
0

`

d2wCFusF,uuwx,wydP2wswx,wyd. s40d

This PDF can be obtained easily through the same change of
variables introduced previously,swx,wyd→ ss,td, because
CFusF ,u us,td= t ·CFustF ,u us,1d and the conditional depen-
dency is reducible to thes variable, alone. This may be ob-
tained by straightforward integration:

CFusF,uus,1d =
1

4o
g=1

4 E E E E
0

2p

d4uGsubddsu − ugd

3dfF − Fgss,1,u1, . . . ,u4dg

3 p
h=1

4

QfFhss,1,u1, . . . ,u4dg, s41d

where only one term of the sum is needed in many cases due
to the symmetries of the ensemble. This reflects the MSA
because it assumes that all grains in the samess,td mode
contribute to the integral according to the same weight. It can
be found by very easy Monte Carlo integration, and the re-
sult for the case of isotropy,CFusF ,u us,1d=CFsF us,1d /2p,
is shown in Fig. 4.

Combining this PDF with Eq.(33) and the definitions of

CFu C̄ and Ȳ,

PFusF,ud =
1

16p2o
g=1

4 E E
0

`

d2wE E E E
0

2p

d4uGsubd

3 dsu − ugddfF − Fgswx,wy,u1, . . . ,u4dg

3 p
h=1

4

QfFhswx,wy,u1, . . . ,u4dg

3 e−lxwx−lywyP2w
! swx,wyd. s42d

P2w
! swx,wyd used in this equation may be obtained a num-

ber of ways that should be equivalent within the accuracy of
the MSA. Two of these have been used in the numerical
results and were shown indeed to produce identical results to
within the statistical precision of the data. The first is purely
consistent with the MSA, assuming no necessity fora priori
correlation between the loads and the contact angles. Fur-
thermore, it assumes noa priori correlation betweenwx and
wy. Correlations arise only after throwing out unstable grain

configurations. That is, it assumes a fixedȲ over the union
of two circles in Fig. 2, not just the intersection of all four

(the gray region). ImposingC̄ then throws out grain configu-

FIG. 3. Grain factor fit to Eq.(39).

FIG. 4. Horizontal cross sections through this plot are the con-
ditional PDF for f, the normalized contact force magnitudes(kFl
=0.39 whent=1). White represents higher probability density. The
vertical axis represents its dependence upon thes variable with a
fixed t=1. Varying t only rescalesf.
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rations outside of the gray region. This method is

wx = F1 cosu1 + F2 cosu2,

wy = F3 sinu3 + F4 sinu4 s43d

(note that all four contacts are treated as if distinctly different
despite the fact that anx hemisphere and ay hemisphere
overlap in one quadrant) and

P2w
! swx,wyd = Pwx

! swxdPwy
! swyd, s44d

where

Pwx
! swxd =E E

0

`

d2FE E
0

2p

d2up
b=1

2

PFusFb,ubd

3dswx − F1 cosu1 − F2 cosu2d, s45d

Pwy
! swyd =E E

0

`

d2FE E
0

2p

d2up
g=3

4

PFusFg,ugd

3dswy − F3 sinu3 − F4 sinu4d. s46d

The second method, which will also be used in a Monte
Carlo solution of the PDF’s, attempts greater fidelity to the
micromechanics by imposinga priori correlation between
wx, wy, and hubj. If the MSA is valid, then imposing these
correlations should be largely superfluous. Comparing the
results of these two methods will therefore test the MSA in
Sec. IV A. The second method, which for simplicity is ex-
pressed here for the case of quartered fabric, is

wx = F1 cosu1 + F2 cosu2,

wy = F2 sinu2 + F3 sinu3 s47d

(note the shared contactFW 2), and

P2w3u
! swx,wy,ubd =E E E

0

`

d3Fp
g=1

3

PFusFg,ugd

3dswx − F1 cosu1 − F2 cosu2d

3dswy − F2 sinu2 − F3 sinu3d. s48d

Inserting either of these forms ofP2w
! into Eq. (42) pro-

duces an MSA recursion equation inPFu, which is the
MSTE. It can be simplified by taking advantage of the vari-
ous symmetries of the ensemble.

The two different forms ofP2w
! produce two different

forms of the MSTE. This is striking because one form ofP2w
!

containssPFud3 whereas the other containssPFud4. The abil-
ity of these two very different transport equations to produce
the samePFu depends upon the validity of the MSA.

III. RESULTS

Here, the following nomenclature is used. The vector
magnitude of the contact forces are denoted byF, their dis-
tribution is PFsFd, and their mean iskFl. The corresponding
normalized force magnitudes aref =F / kFl, which have a dis-

tribution Pfsfd=kFlPFsfkFld. The Cartesian force compo-
nents in thex direction are denoted byFx, their distribution is
PXsFxd, and their mean iskFxl. The corresponding normal-
ized Cartesian forces arefx=Fx/ kFxl, which have a distribu-
tion Pxsfxd=kFxlPXsfxkFxld.

The MSTE in the previous section was solved in a Monte
Carlo process for the case of isotropic stress and fabric, with
one further simplification. It was found thatlx andly were
not exactly zero in the MSA, although they were very tiny,
,0.01, so that the exponential factors were not exactly unity
but were nevertheless negligible. Therefore, rather than
implementing the exponential weighting exactly, the forces
were simply rescaled with a flat factor in each iteration to
prevent incremental growth. This approach is reasonable be-
cause the phase space for rigid grains has no inherent force
scale, the growth was very small, and the growth was bal-
anced in thex and y components. Hence, the form of the
DOS should not be greatly affected by this flat rescaling.

The MSTE was shown to converge efficiently to the same
stationary state after beginning from several different initial
distributions. The original work was performed with Math-
ematica solving for approximately 5500 grains. These results
are presented in this paper. Ongoing efforts withFORTRAN

demonstrate that converged solutions can be found for 1
3106 contacts in about 1 min on a desktop computer. It is
quite easy to obtain data sets of 1010 grains or greater, mak-
ing it possible to study joint or conditional distributions of
three or more variables with smooth statistics using only a
desktop computer. For some applications this provides a tre-
mendous computational advantage over the fully dynamic
simulations.

The Pfsfd resulting from the transport method was shown
earlier in Fig. 1. It has all the key characteristics of granular
contact force PDF’s. A fit, shown as the smooth curve in Fig.
1, was obtained with the form proposed for the data from the
carbon-paper experimental method[7]:

Pfsfd = as1 − be−cf2de−df. s49d

Using the valuesa=3.28,b=0.85,c=1.56, andd=1.56, the
fit is excellent and is in quantitative agreement with the
range of values reported from both experiments and numeri-
cal simulations. It should be noted that here, as in most of the
empirical distributions[7,11,13], d is suspiciously close to
p /2. A plausible reason why this value arises under isotropic
conditions is provided in the discussion section.

For the special case of true isotropy in which

PFusF,ud = PFsFdPusud = PFsFd/2p, s50d

changing variables to Cartesian componentsFx=F cosu is
effected in probability theory by the straightforward

PXsFxd =E
0

2p

duE
0

`

dF
PFsFd

2p
dsFx − F cosud s51d

or by evaluating the inner integral and expressing as normal-
ized forces:
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Pxsfxd =
2

p

kFl
kFxl

E
0

p/2

duPfsfx secudsecu, s52d

where the symmetries of isotropy were used to reduce the
range of integration inu. Numerically integrating this[15]
with the Pfsfd of Eq. (49) yields the smooth line in Fig. 5. It
fits the numerical Cartesian component data from the trans-
port algorithm (shown in the same figure) over the entire
range. It has a singularity atfx=0 and is monotonically de-
creasing as demonstrated in numerical simulations[14,15]. It
is not purely exponential, the two knees being indicative of a
summation ofnth-order modified Bessel functions of the sec-
ond kind, Knsbxfxd, functions which result naturally when
exponential forms are used forPfsfd in Eq. (52).

The only problem with the fit shown in Fig. 1 occurs in
the region of very small forces,f &0.2. This is the same
region in which the form of Eq.(49) could not be experi-
mentally verified due to calibration limits. Therefore it is not
known whether this is the correct empirical form in that re-
gion [36]. A better fit can be obtained using another form so
that it fits excellently over the entire range includingf !1.
This will be accomplished starting with the observation
noted above, that the two knees in Fig. 5 are indicative of
Knsbxfxd. These two knees appear very dramatically in a ro-
tation of the coordinates, a rotation which is most easily
understood if performed manually by lifting the edge of the
page toward the eye and rotating it so that the line of sight is
parallel to the segments of the graph in Fig. 5. The fit to
Pfsfd will therefore be accomplished by fitting the natural
forms toPxsfxd and then mathematically inverting the trans-
formation of Eq.(52). The simplest fit to within the statistical
accuracy of this data set appears to be of the form

Pxsfxd = C1o
n=0

2

anfx
nKnsbxfxd, s53d

with a0=2, a1=−2, a2=11, andbx=p /2, and whereC1 is for
normalization. The fit is excellent over the entire range, dis-
playing all the correct knees and piecewise slopes as shown
in Fig. 6 (top). The shape of the knee closest tofx=0 could

be obtained only by including aK0 term. This term has infi-
nite probability density forfx=0, but the singularity is very
narrow and hence cannot usually be seen in a finite set of
empirical data that has been aggregated into bins of finite
width [37].

The transformation integral which is the inverse of Eq.
(52) cannot be deduced by probability theory becausefx and
u are not statistically independent. Therefore, inverting the
change of variables to go fromsfx,ud→ sf ,ud is not trivial,
even in this isotropic case. Nevertheless, the exact relation-
ship can be derived using an approach which is equivalent to
the mathematics of x-ray tomography[38]. The result is

PFsFd =
1

F
E

0

p/2

duPXsF secudcsc2 u s54d

or, in normalized forces,

Pfsfd =
kFxl
kFl

1

f
E

0

p/2

duPxsf secudcsc2 u. s55d

This relationship is fascinating because we know thatFx
=F cosu and thereforeFxøF for all u; however, this rela-
tionship computesF in terms ofFx=F secu so thatFxùF
for all u. This says that the probability of finding a contact
force magnitudeF is a weighted sum over the probabilities

FIG. 5. Semilogarithmic plot of the PDFPxsfxd of the normal-
ized x components of the granular contact forcesfx=Fx/ kFxl. The
smooth curve was obtained from Eq.(52). The semilogarithmic
inset shows the behavior belowfx=1.

FIG. 6. (Top) The normalized Cartesian force componentsfx

from the mean-structure transport method fitted to Eq.(53), which
appears to be the natural form. The inset shows the behavior below
fx=1. (Bottom) The force magnitudesf from the mean-structure
transport method fitted to Eq.(56). The inset shows the behavior
below f =2. These two fits analytically transform to one another
through Eqs.(52) and (55).
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for all the Cartesian componentsFx that are too large to be
relevant. Nevertheless, it is mathematically correct.

Using Eq.(53) in Eq. (55), we obtain

Pfsfd =
pC2

2
e−bfo

n=0

2

bnkFlnfn, s56d

with C2=C1, b0=a0, b1=pa1/2+a2, b2=pa2/2, and b
=bxkFl / kFxl<sp /2d2. This result fits the numerical data
from the MSTE excellently over the entire range off as
shown in Fig. 6(bottom). It exactly matches the finite and
nonzero value ofPFs0d=sp /2dC1a0 that occurred in the nu-
merical data, so we see that thea0 term that madePxsfx

→0d infinite is the sameb0 term that makesPfs0d nonzero
and finite. The linear plots of Eqs.(53) and(56) are shown in
Fig. 7 in order to show that the curve fits are truly good in
the region of weak forces, even without the compression of a
logarithmic axis.

Figure 8 shows semilogarithmically the Cartesian load
PDF Pwswd produced by the MSTE, computed for several
different rotations of the Cartesian axes. These distributions
have an exponential tail and a peak nearw<1. The near
similarity of the rotated plots indicates approximate rota-
tional symmetry for this nearly isotropic model, despite its
quartered fabric. The variation in the region of weak loads is
the result of that quartering. In the unrotated axes, wherein
the grains have exactly two contacts on each hemisphere, we
find Pwswd→0 asw→0. We may fitPwswd in these unro-
tated axes to an exponential with a power law prefactor

Pwswxd = S wx

kwxl
Da

e−bwx/kwxl. s57d

If the distribution ofFx had been purely exponential and if
there had been no correlation between adjacent values ofFx
on the same grain, then this should have had values ofa
=1.0,b=2.0, andkwxl=2kFxl as in the uniformq model. We
do find an excellent fit over the entire curve using this form,
and we do find thatkwxl=2.0kFxl, but the fit is obtained with
the valuesa=3 andb=4.

By comparison, when the Cartesian axes are rotated the
grains in this model may have one, two, or three contacts on
the sampled hemisphere instead of the strict two contacts per
hemisphere(one contact per quadrant) that was defined for
the unrotated axes. ThePwswd for these rotated axes are also
shown in Fig. 8. They begin with afinite probability density
for zero force instead of beginning at zero, and the finite
value is maximized when the rotation isp /4 radians because
this is where we obtain the maximum fraction of grains hav-
ing something other than two contacts on the hemisphere. It
was found in numerical simulations[14,15] that when the
grains in the bulk are segregated into separate populations
having one, two, or three contacts on one side of the grain,
respectively, then the Cartesian weight on the grains which
support two or three others has aPwswd which does go to
zero probability forw→0. It is the population which sup-
ports only one contact which has a nonzeroPwswd because
the load in that case is closely related toPfsfd, which itself is
nonzero at zero force. Thus, the MSTE results are in agree-
ment with this aspect of the simulation data, as well.

The distribution ofs and t variables resulting from the
transport method are fit excellently by

Pstss,td = A cosSp

2
sDS t

ktl
D4

e−5t/ktle−7.9s2
. s58d

Thus, by comparing Eqs.(39) and (36) with lx=ly=0, the
structure factor can be identified:

FIG. 7. (Top) Linear plot of the normalized Cartesian force
componentsfx from the MSTE fitted to Eq.(53). (Bottom) Linear
plot of the force magnitudesf.

FIG. 8. Semilogarithmic plot of the Cartesian load PDF, the
PDF of the total normalized load borne by each grain in thex or y
direction unrotated(solid line), rotatedp /6 radians(dotted line),
andp /4 radians(dashed line).
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Ȳstss,td = cosSp

2
sDS t

ktl
D4

e−5t/ktl = ȲsssdȲtstd. s59d

Ȳt and Ȳs resulting from the transport method are shown in
Fig. 9 with smooth curves from Eq.(59).

IV. DISCUSSION

A. Validity of the approximations

The two approximations which enabled this ensemble
analysis are the first-shell approximation and the mean-
structure approximation. Ultimately, the quantitative valida-
tion of these requires a careful comparison with numerical
simulation data for particular states of the stress, fabric, and
rheological history, and this has not yet been performed.
Meanwhile, the qualitative validity is already evident as dis-
cussed below.

1. Validity of the FSA

Beside the constraints which defined the ensemble’s DOS,
Eq. (2), another geometric constraint is needed to ensure clo-

sure of every “loop” of grains in a packing. Without this
closure, the chains of contacting grains are allowed to branch
out ever increasingly in all directions and overlap into one
another’s space. Geometrically, then, omitting this constraint
does not produce a good approximation to a packing. How-
ever, it may still be an excellent approximation as far as the
statistics of single-grain states are concerned.

It has been shown[13] that contact forces on the same
grain are strongly correlated with one another. There is anti-
correlation for contacts closer together thanDu<0.4p radi-
ans of angular separation and a positive correlation when the
angular separation is greater than that. The correlation con-
tinues to increase as the contacts are increasingly distant
from one another but still on the same grain. The correlation
dramatically drops immediately thereafter when the distance
between contacts becomes greater than one grain diameter.

The strong intragrain relationships make sense due to the
requirements of static equilibrium of the individual grains.
Contacts on the same quadrant compete for a share of the
same load and hence are anticorrelated. Contacts opposite
one another transmit load through one another and hence are
correlated. Simplistically we could expectDu=p /2 to be the
crossover point of no correlation as illustrated in Fig. 10.
This is approximately correct, and the error is probably at-
tributable to the existence of three-grain loops, history-
dependent frictional effects, and so on.

Likewise, the sudden drop in correlation after one grain
diameter of separation is also understandable in terms of the
local mechanics. It is true that neighboring grains share a
common contact so that contacts on adjacent grains are just
two sequential two-point correlations away from one an-
other. This induces correlations between them. However,
these intergrain correlations should be primarily the result of
the information contained in the sequential two-point intra-
grain correlations because the lack of cohesion makes the
grains otherwise(largely) independent. Additional con-
straints are not found in the packing until entirely closed
loops of grains are considered so that the sequential two-
point correlations come all the way around the loop back to
the original grain, again. In 2D the typical closed loop con-
sists of four grains, each grain being a vertex between a pair
of contacts that form the loop. The four-point correlation
constructed as three sequential two-point correlations going
the long way around a loop would undoubtedly be very weak
compared to the single two-point correlation going the short
way around the same loop, since the short way is intragrain.
Hence, the extra correlation information imposed going the

FIG. 9. Structure factor obtained
from the mean-structure transport
method, fit to Eq.(59) for the case of
isotropy withkwyl=kwyl=ktl /2=1/2,
(a) semilog plot oft dependence,(b)
linear plot ofs dependence.

FIG. 10. Contacts that are approximatelyp /2 radians away
from one another on the same grain are only weakly correlated as
illustrated by the closed loop of four grains that allows any combi-
nation of weak and strong force chains to pass through it. If the
angles were preciselyp /2, then the four force chains in this figure
would be completely independent.
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long way around the loop must be very weak compared to
the information already present intragrain. It should therefore
be an excellent approximation to neglect this additional in-
formation and consider only the intragrain relationships in
defining the DOS. This is the essence of the FSA.

This is not a rigorous argument because we should con-
sider the sum of information fromall the loops in the pack-
ing that contain the grain in question, and it is conceivable
that the sum of very many weak contributions may be strong.
However, due to the randomness of the packing and the large
number of amorphous packings that may exist in the con-
figuration space, it is expected that the contributions from
increasingly larger loops of grains will be increasingly deco-
herent and largely cancel one another. Hence, there is good
reason to assume that only the intragrain contribution to the
correlations is significant in agreement with the FSA.

If correct, the FSA is an important statement of the phys-
ics because it fundamentally characterizes the DOS and pro-
vides deep insight into the organization of the physics. In
contrast to thermal systems, with granular packings it would
be completely unsatisfactory to use a mean-field approxima-
tion because this would throw away the structure resulting
from the strong two-point correlations(remembering that
these have been observed empirically). However, by includ-
ing only this next higher level in the approximation—that is,
only the two-point correlations(and assuming that higher
correlations exist strictly as a sequence of two-point
correlations)—the maximization of a state-counting entropy
and the solution of the resulting transport equation produc-
esexcellent results as shown in the previous Sec. III. The
two-point correlations therefore appear to be the essence of
the physics. Further work is needed to carefully test this
hypothesis.

2. Validity of the MSA

The MSA is important because, if correct, it characterizes
the structure factor as being a functional ofP2w

! swx,wyd
rather thanPFusF ,ud, and this offers the possibility to de-
couple the fabric from the force distributions in a way that
will help the development of a full theory of rheology. In the
meantime, pending rigorous testing of the MSA, the follow-
ing three considerations are presented to help justify it.

First, the results produced by the MSA appear to be in
excellent agreement with the numerical simulation data. A
focused effort is needed to further test the quantitative agree-
ment in specific cases of stress and fabric.

Second, the values ofY have been calculated according to
Eq. (8) for the data obtained in the MSTE. The conditional
PDF PYsY us,td was calculated for various fixed values ofs
andt and these are presented in Figs. 11 and 12 fors=0 and
s=0.6, respectively. For some values ofs and t, the ratio

Ysmaxd / Ȳ is as high as 3(or greater) andYsmind / Ȳ is as small
as 1/3(or lower). This means that same grain configurations
hsi ,ti ,ui jj will occur 3 times too often or only 1/3 often
enough in the MSA ensemble compared to the exact Ed-
wards ensemble. This effect is most pronounced whent is
high ands is low. However, high values oft are rare to begin
with. Furthermore, the distribution for each pair of values
ss,td is localized with a clear peak and so the majority of

grain configurations will have a value ofY that is relatively

not very far fromȲ while being distinctly separate from the

Ȳ for other values ofss,td. These latter considerations imply
that the MSA does characterize the organization in the DOS
qualitatively, but more effort is needed to show whether it is
quantitatively sufficient.

Third, two different sampling schemes were implemented
as presented in Eqs.(46) and(48). The results were identical
to within the statistical precision of the data, as shown in Fig.
13. This shows that the resulting distributions are insensitive
to the existence or nonexistence of correlations between the
Cartesian loads and the contact angles, and this is the essence
of the MSA.

B. Form of the density of states

The features of a DOS may be described by two compo-
nents: the shape of the accessible regions of the phase space
and the measure that is used within that space. It is possible
that the phase space is not equally accessed by the dynamics
of a real packing as it locates and settles into one of the static
states. Perhaps this is more true for the hyperstatic(fric-
tional) case or for other cases less idealized than the one
considered here. The form of the PDF’s would then be a
reflection of the shape of the measure rather than the shape

FIG. 11. Distribution of values ofYss,t ,u jd for fixed values
=0 and several fixed values oft. (Top) From left to right, t=10
(dashed line), 9 (solid line), 8 (dashed line), 7 (solid line), 6 (dashed
line), 5 (solid line), 4 (dashed line), 3 (solid line), and 2(dashed
line). (Bottom) From left to right,t=1/10 (dashed line), 1 /9 (solid
line), 1 /8 (dashed line), 1 /7 (solid line), 1 /6 (dashed line), 1 /5
(solid line), 1 /4 (dashed line), 1 /3 (solid line), 1 /2 (dashed line),
and 1(solid line).
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of the space. Nevertheless, the use of Edwards’ flat measure
produced at least thepredominantfeatures ofPFsFd, and so
those features are attributable to the shape of the space. The
surprising repeatability ofPFsFd seen experimentally and in
simulations under many conditions and in many nonidealized
cases is therefore explained by this fact.

The rise inPFsFd to a peak is not due to a degeneracy of
F states in the same way that thermal systems have a distri-
bution shaped by the degeneracy of energy states or momen-
tum magnitudes. In other words, if a granular contact force
F= ÎfFx

2+Fy
2+Fz

2g had three Cartesian components that were
statistically independent, then there would be a volume of
phase spaceVsFd corresponding to each value ofF such that
V→0 asF→0. If that were the case, then the rise inPFsFd
would necessarily begin at the origin. However, since that is
contrary to empirical observations, this sort of Cartesian
component degeneracy must not be a dominant feature in the
DOS despite the fact thatF is a vector magnitude.

An explanation for this begins with the idea that the fun-
damental unit in a granular packing is not a contact force, but
a grain, and so the physics of allowable grain states limits the
space(i.e., there must be a grain factor). For the particular
case considered in this paper, there must be six axes in the
phase space of single grain states. The 2D stress tensor has
two independent principle stress values, and so at least two
of the six axes represent the force state. These may bewx and
wy (or s andt). The other four axes must convey the geomet-
ric information, so they may be contact angles. If the space
were given more axes than this, then the density of single
grain states would be constrained onto a(hyper)surface
within that space, but we want the states to fill the volume so
that we may examine the behavior of the volume in the limit
that one contact forceF1→0.

A fixed value of F1 defines a five-dimensional region
within the single grain space. Its 5D volume is

VsF1d =E E
0

`

d2wV8sF1,wx,wyd, s60d

where

V8sF1,wx,wyd =E E E E d4u Qssteric exclusiond

3dfF1 − F1swx,wy,u jdgQsF2dQsF3dQsF4d
s61d

is the volume of a 3D hypersurface. The integrand of this is
everywhere non-negative and for any load state
swx.0,wy.0d there exist some angleshubj such that the
integrand is positive. This is because just three contactsF2,
F3, andF4 can support arbitrarily high loads by themselves
regardless of the value ofF1. Therefore,

V8sF1,wx,wyd . 0 ∀ wx . 0, wy . 0. s62d

This fact is demonstrated in 2D frictionless numerical simu-
lations where it is seen that a large fraction of the grains have
coordinationZ=3 and yet support compressive loads in both
axeswx andwy. Because of this, it turns out that in Eq.(60)
the integrals inw diverge andV is infinite for all values of
F1. The conclusion is that stable grains withF1→0 are not
confined into a vanishing region of the phase space. This is
in contrast to thermal systems where, for example,p
=Îfpx

2+py
2+pz

2g can be zero if and only if all its statistically
independent components become zero so thatVspd→0 as
p→0.

FIG. 12. Distribution of values ofYss,t ,u jd for fixed values
=0.6 and several fixed values oft. (Top) From left to right, t=8
(dashed line), 7 (solid line), 6 (dashed line), 5 (solid line), 4 (dashed
line), 3 (solid line), and 2(dashed line). (Bottom) From left to right,
t=1/10(dashed line), 1 /9 (solid line), 1 /8 (dashed line), 1 /7 (solid
line), 1 /6 (dashed line), 1 /5 (solid line), 1 /4 (dashed line), 1 /3
(solid line), 1 /2 (dashed line), and 1(solid line).

FIG. 13. Comparison of the curves that were fitted to the em-
pirical Pfsfd (large plot) and Pxsfxd (inset) that resulted from the
mean structure transport method using two different sampling meth-
ods. In each plot the solid line uses sampling as Eq.(46) with
quartered fabric, whereas the dashed line used sampling as in Eq.
(48) but with nonquartered fabric. The results are statistically indis-
tinguishable, lending credence to the mean-structure approximation.
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There are two key distinctives of the granular phase
space. First, while contact forces are indeed vectors, the sta-
bility requirement for the individual grains is so constraining
that the components of the vectors cannot be statistically
independent. Therefore, the DOS cannot be uniform in a
space defined by the Cartesian axes. The degeneracy of vec-
tor magnitudes does not automatically forcePFs0d to zero.
Second, even the magnitudes of the contact forces sharing
the same grain cannot be statistically independent. Therefore,
the DOS cannot be uniform in a space defined by all the
force magnitude axes. The vanishing volume of the nonten-
sile quadrant near the origin does not automatically force
PFs0d to zero, either. Instead forces sharing a grain are cor-
related in some regions of phase space and anticorrelated in
other regions, depending upon thehubj axes. It is the exis-
tence of anticorrelation that provides the grains no fewer
degrees of freedom atF1=0 than they have at any other
value ofF1. This will be explained further, below.

This observation about the phase space is the answer why
PFs0d.0. Edwards’ flat measure predicts it, indicating that
the vast majority of metastable packings contain a finite frac-
tion of grains with one or more contacts arbitrarily close to
zero force. In fact, we know this is correct because every
time the stress state of a packing is perturbed there is a finite
probability that a measurable fraction of the grains will tip
and rearrange. If something in the physics had made the
region near zero force to be a vanishing fraction of the ac-
cessible space, then a flat measure in the space would have
made tipping and rearranging prohibitively improbable.

Since the volume of phase space does not vanish asF
→0, then what causes the slope inPFsFd in the region of
weak forces? The answer is that even thoughV8 is nonvan-
ishing asF1→0, it does get somewhat smaller in that limit.
This is because contacts on opposite hemispheres of the
grain—say, F1 and F3—are highly correlated. When
0,F1, kFl, thenF3,0 over a larger region ofhubj than it
is whenF1. kFl. This was proven analytically for a special
case in Ref.[39]. Note that Eq.(61) assumes isotropy in the
integrand. Weighting the integrand anisotropically may pro-
vide sufficient generality to produce either rising or falling
slopes inPFsFd in the region of weak forces, and this may
explain its evolution under slow shearing[6].

The reason the simplest model of Edwards and Grinev[3]
predictsPFs0d=0 is because it treats all the input forces and
angle cosinesl2 as statistically independent. This implies a
phase spacehFi ,li

2j with many more degrees of freedom
than a static grain actually possesses. Then, the non-negative
domains of all the angle cosines ensure that everyFi is posi-
tively correlated withF, where F=l1

2F1+¯ +lsZ−1d
2 FsZ−1d.

The only way thatF can be zero is for allsZ−1d quantities
sli

2Fid to be simultaneously zero, which is vanishingly im-
probable due to their statistical independence. This is in con-
trast to real grains where the neighboring contacts having
less thanp /2 radians of angular separation should be anti-
correlated. That is, one contact can lift the load off of its
neighboring contact so that if one contact bears more load
then the neighbor must bear less. This anticorrelation allows
the grain to be stable withF=0 while the other contacts have
nonzero forces on them. That is, the grain finds more ways to

be stable with zero force on one of its contacts than simply
by having zero force on all of its other contacts. Without
addressing the statistical independence of the inputs, the
model could therefore be improved(at the loss of solvability,
perhaps) by extending the ranges ofsli

2d to include some
portion of sl2d,0. This will account for the range of anti-
correlation between neighboring contacts. Extending the
space this way will ensure thatVsFd is nonvanishing forF
→0 and will result inPFs0d.0. This was demonstrated in
the numerical solution of the MSTE. When the values ofsl2d
were extracted from the numerical data, it was found that
they had a range −0.5,l2,1. The lower limit reflects steric
exclusion, and the upper limit reflects maximal separation on
opposite sides of a grain.

V. SUMMARY AND CONCLUSIONS

The use of the FSA makes it possible to solve the DOS
based upon Edwards’ flat measure in a frictionless granular
packing of smooth, round, rigid grains with localized isos-
tacy. This produces a transport equation that can be solved
(at least numerically). Solution of this transport equation in
the MSA was shown to produce the correct features for the
contact force distributions.

This success tends to validate Edwards’ hypothesis: the
DOS appears to be dominated by features inherent to the
static phase space, depending solely upon the packing’s
present fabric and the stress tensor. That is, the DOS may not
be shaped too significantly during the physics of the dynamic
regime before the packings achieve static equilibrium.

The need for further work is apparent. First, the two ap-
proximations have not been adequately validated. The quan-
titative results should be compared with simulations of rigid,
frictionless grains with carefully controlled stress states and
carefully measured fabric. This has not yet been performed
because most studies have either included gravity or not re-
ported the stress state or fabric.

Second, solution of the transport equation without the
MSA is being developed. Those results compared against the
present study will be an important test of the MSA.

Third, the analysis should be extended and numerical re-
sults presented for more general cases. The case with aniso-
tropic stresses and fabric should demonstrate the qualitative
evolution of the PDF’s under shearing. This work has begun,
and the initial results are hopeful.

Fourth, the forms of the functions that fit the numerical
data forPstss,td are tantalizingly simple. If the cause of this
can be identified then a completely analytical solution to the
MSTE may be possible.

ACKNOWLEDGMENTS

I am grateful for helpful discussions with Aniket Bhatta-
charya of the University of Central Florida Physics Depart-
ment and with Robert Youngquist of NASA’s John F.
Kennedy Space Center.

GRANULAR CONTACT FORCE DENSITY OF STATES… PHYSICAL REVIEW E 70, 051303(2004)

051303-17



[1] K. Bagi, in Powders & Grains 97, edited by R. P. Behringer
and J. T. Jenkins(Balkema, Rotterdam, 1997), pp. 251–54.

[2] K. Bagi, Granular Matter5, 45 (2003).
[3] S. F. Edwards and D. V. Grinev, Granular Matter4, 147

(2003).
[4] N. P. Kruyt and L. Rothenburg, Int. J. Solids Struct.39, 571

(2002); N. P. Kruyt, ibid. 40, 3537(2003).
[5] A. H. W. Ngan, Phys. Rev. E68, 011301(2003).
[6] S. J. Antony, Phys. Rev. E63, 011302(2001).
[7] D. L. Blair, N. W. Mueggenburg, A. H. Marshall, H. M. Jae-

ger, and S. R. Nagel, Phys. Rev. E63, 041304(2001); D. M.
Mueth, H. M. Jaeger, and S. R. Nagel,ibid. 57, 3164(1998).

[8] J. M. Erikson, N. W. Mueggenburg, H. M. Jaeger, and S. R.
Nagel, Phys. Rev. E66, 040301(R) (2002).

[9] J. Landry, G. Grest, L. Silbert, and S. Plimpton, Phys. Rev. E
67, 041303(2003).

[10] C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys.
Rev. Lett. 86, 111 (2001).

[11] F. Radjai, M. Jean, J.-J. Moreau, and S. Roux, Phys. Rev. Lett.
77, 274 (1996).

[12] F. Radjai, Comput. Phys. Commun.121–122, 294 (1999); F.
Radjai, S. Roux, and J.-J. Moreau, Chaos9, 544 (1999).

[13] L. E. Silbert, G. S. Grest, and J. W. Landry, Phys. Rev. E66,
061303(2002).

[14] J. H. Snoeijer, M. van Hecke, E. Somfai, and W. van Saarloos,
Phys. Rev. E67, 030302(R) (2003).

[15] J. H. Snoeijer, M. van Hecke, E. Somfai, and W. van Saarloos,
Phys. Rev. E70, 011301(2004).

[16] C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys.
Rev. Lett. 88, 075507(2002); J. H. Snoeijer, T. J. H. Vlugt, M.
van Hecke, and W. van Saarloos,ibid. 92, 054302(2004).

[17] C. Thornton, Kona15, 81 (1997).
[18] J. Brujić, S. F. Edwards, D. V. Grinev, I. Hopkinson, D. Brujić,

and H. A. Makse, Faraday Discuss.123, 207 (2002).
[19] A. V. Tkachenko and T. A. Witten, Phys. Rev. E62, 2510

(2000).
[20] A. Mehta and S. F. Edwards, Physica A157, 1091(1989); C.

C. Mounfield and S. F. Edwards,ibid. 210, 279 (1994); S. F.
Edwards and C. C. Mounfield,ibid. 210, 290 (1994); C. C.
Mounfield and S. F. Edwards,ibid. 210, 301 (1994); S. F.
Edwards and D. V. Grinev, Phys. Rev. E58, 4758 (1998); P.
G. de Gennes, Rev. Mod. Phys.71 S374(1999); A. Coniglio
and M. Nicodemi, Physica A296, 451 (2001); V. Colizza, A.
Barrat and V. Loreto, Phys. Rev. E65, 050301 (2002); A.
Fierro, M. Nicodemi, and A. Coniglio,ibid. 66, 061301
(2002); S. F. Edwards and D. V. Grinev, Adv. Phys.51, 1669
(2002); R. Blumenfeld and S. F. Edwards, Phys. Rev. Lett.90,
114303 (2003); A. Coniglio, A. Fierro, and M. Nicodemi,
Physica D 193, 292 (2004); J. Brujić, S. F. Edwards, and D.
Grinev, Philos. Trans. R. Soc. London, Ser. A361, 741
(2003); S. F. Edwards, D. Grinev, and J. Brujić, Physica A
330, 61 (2003).

[21] S. F. Edwards and C. C. Mounfield, Physica A226, 1 (1996);
C. C. Mounfield and S. F. Edwards,ibid. 226, 12 (1996); S. F.
Edwards and C. C. Mounfield,ibid. 226, 25 (1996); S. F.
Edwards, ibid. 249, 226 (1998); Philos. Mag. A 77, 1293
(1998); S. F. Edwards and D. V. Grinev, Phys. Rev. Lett.82,
5397 (1999); Chaos 9, 551 (1999); Physica A 263, 545
(1999); R. C. Ball and D. V. Grinev,ibid. 292, 167 (2001); S.
F. Edwards and D. V. Grinev,ibid. 294, 57 (2001); 302, 162

(2001); R. Blumenfeld,ibid. 336, 361 (2004); R. Blumenfeld,
Phys. Rev. E(to be published).

[22] J. P. Bouchaud, inSlow Relaxations and Nonequilibrium Dy-
namics in Condensed Matter, Les Houches Session LXXVII,
edited by J.-L. Barrat, M. V. Feigelman, J. Kurchan, and J.
Dalibard, NATO Advanced Study Institute Series(Springer
Verlag, New York, 2003), pp. 141-142.

[23] S. F. Edwards and R. B. S. Oakeshott, Physica A157, 1080
(1989).

[24] J.-P. Bouchaud, P. Claudin, D. Levine, and M. Otto, Eur. Phys.
J. E 4, 451(2001); M. Otto, J.-P. Bouchaud, P. Claudin, and J.
E. S. Socolar, Phys. Rev. E67, 031302(2003); J. E. S. Soco-
lar, Discrete Contin. Dyn. Syst., Ser. B3, 601 (2003).

[25] P. Claudin, J.-P. Bouchaud, M. E. Cates, and J. P. Wittmer,
Phys. Rev. E57, 4441 (1998); A. V. Tkachenko, and T. A.
Witten, ibid. 60, 687(1999); J. Rajchenbach,ibid. 63, 041301
(2001); J. Geng, D. Howell, E. Longhi, R. P. Behringer, G.
Reydellet, L. Vanel, E. Clément, and S. Luding, Phys. Rev.
Lett. 87, 035506(2001); D. Serero, G. Reydellet, P. Claudin,
É. Clément, and D. Levine,6, 169(2001); C. F. Moukarzel, J.
Phys.: Condens. Matter14, 2379(2002); N. W. Mueggenburg,
H. M. Jaeger, and S. R. Nagel, Phys. Rev. E66, 031304
(2002); L. Breton, P. Claudin, É. Clément, and J.-D. Zucker,
Europhys. Lett.60, 813(2002); J. Geng, G. Reydellet, E. Clé-
ment, and R. P. Behringer, Physica D182, 274 (2003).

[26] M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, and P. Claudin,
Chaos9, 511 (1999); E. Aharonov, and D. Sparks, Phys. Rev.
E 60, 6890(1999); E. Kolb, J. Cviklinski, J. Lanuza, P. Clau-
din, and E. Clément,ibid. 69, 031306(2004); J. A. Drocco, M.
B. Hastings, C. J. Olson Reichhardt, and C. Reichhardt, cond-
mat/0310291.

[27] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys.
Rev. E 68, 011306(2003).

[28] C.-h. Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S.
Majumdar, O. Narayan, and T. A. Witten, Science269, 513
(1995).

[29] S. N. Coppersmith, C.-h. Liu, S. Majumdar, O. Narayan, and
T. A. Witten, Phys. Rev. E53, 4673(1996).

[30] C. Eloy and E. Clément, J. Phys. I7, 1541 (1997); E. B.
Pitman, Phys. Rev. E57, 3170 (1998); M. Nicodemi, Phys.
Rev. Lett. 80, 1340(1998); J. E. S. Socolar, Phys. Rev. E57,
3204 (1998); M. L. Nguyen and S. N. Coppersmith,ibid. 59,
5870(1999); M. G. Sexton, J. E. S. Socolar, and D. G. Schaef-
fer, ibid. 60, 1999 (1999); M. L. Nguyen and S. N. Copper-
smith, ibid. 62, 5248 (2000); O. Narayan,ibid. 63, 010301
(2000); T. Aste, T. Di Matteo, and E. G. d’Agliano, J. Phys.:
Condens. Matter14, 2391(2002).

[31] See note 30 in F. Radjai and D. E. Wolf, Granular Matter1, 3
(1998) as well as Refs.[14,15].

[32] A. V. Tkachenko and T. A. Witten, Phys. Rev. E60, 687
(1999); L. E. Silbert, D. Ertaş, G. S. Grest, T. C. Halsey, and
D. Levine, ibid. 65, 031304(2002); A. Kasahara and H. Na-
kanishi, J. Phys. Soc. Jpn.73, 789 (2004).

[33] L. Vanel, D. Howell, D. Clark, R. P. Behringer, and E. Clé-
ment, Phys. Rev. E60 R5040(1999).

[34] H. Troadec, F. Radjai, S. Roux, and J. C. Charmet, Phys. Rev.
E 66, 041305(2002).

[35] L. Rothenburg, and A. P. S. Selvadurai, inMechanics of Struc-
tured Media, edited by A. P. S. Selvadurai(Elsevier Scientific,
New York, 1981), p. 469.

PHILIP T. METZGER PHYSICAL REVIEW E70, 051303(2004)

051303-18



[36] More importantly, it should be noted thatPfsfd along the
boundary of a container is reallyPwswd, and due to the unusual
contact geometries in the boundary layer, the form ofPfsfd is
not necessarily the same as it is in the bulk. These relationships
were studied in Refs.[14,15], showing at least qualitative if
not quantitative similarity between the bulk and boundary dis-
tributions. The numerical simulation studies have published
values for the exponential tail decay constant allowing for a
more limited quantitative comparison in the bulk. These simu-
lations have not generally been for the case of isotropic fabric

and stress or always using frictionless, rigid grains, so com-
parison with the bulk in the region of weak forces can at the
present be only qualitative.

[37] A definite integral over the singularity converges producing a
finite probability as expected, so the singularity in the prob-
ability densityis not a problem.

[38] R. C. Youngquist, P. T. Metzger, and K. N. Kilts(unpub-
lished).

[39] P. T. Metzger, Phys. Rev. E69, 053301(2004).

GRANULAR CONTACT FORCE DENSITY OF STATES… PHYSICAL REVIEW E 70, 051303(2004)

051303-19


